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Rapid transmission of contaminants in groundwater can occur in alluvial

gravel aquifers that are permeated by highly conductive small-scale open

framework gravels (OFGs). This open framework gravel structure and the

associated distribution of hydraulic properties is complex, and so

assessments of contamination risks in these aquifers are highly

uncertain. Geostatistical models, based on lithological data, can be

used to quantitatively characterize this structure. These models can

then be used to support analyses of the risks of contamination in

groundwater systems. However, these geostatistical models are

themselves accompanied by significant uncertainty. This is seldom

considered when assessing risks to groundwater systems. Geostatistical

model uncertainty can be reduced by assimilating information from

hydraulic system response data, but this process can be

computationally challenging. We developed a sequential conditioning

method designed to address these challenges. This method is

demonstrated on a transition probability based geostatistical simulation

model (TP), which has been shown to be superior for representing the

connectivity of high permeability pathways, such as OFGs. The results

demonstrate that the common modelling practice of adopting a single

geostatistical model may result in realistic predictions being overlooked,

and significantly underestimate the uncertainties of groundwater transport

predictions. This has important repercussions for uncertainty

quantification in general. It also has repercussions if using ensemble-

based methods for history matching, since it also relies on geostatistical

models to generate prior parameter distributions. This work highlights the

need to explore the uncertainty of geostatistical models in the context of

the predictions being made.
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1 Introduction

Alluvial gravel aquifers are a valuable source of freshwater

globally (Alsharhan and Rizk, 2020; De Luca et al., 2020). Due to

their alluvial nature, such aquifers are inherently heterogeneous,

being composed of various sedimentary textural classes that

include open framework gravels (OFGs) (Cary, 1951; Lunt

et al., 2004; Bridge & Lunt, 2006; Lunt & Bridge, 2007). A

characteristic trait of OFGs is their macroporosity, which

makes them highly permeable (Klingbeil et al., 1999; Ferreira

et al., 2010). Dann et al. (2008), and Jussel et al. (1994) have

shown through field tests and numerical modelling that the

connectedness of OFGs has a profound effect on the hydraulic

function of alluvial gravel aquifers, by facilitating preferential

flow and rapid solute transport. OFGs also have a low capacity for

microbial removal (Rossi et al., 1994; Pang, 2009; Flynn et al.,

2015) and therefore pose a significant risk in regard to human

exposure to pathogenic disease in situations where untreated

drinking water is sourced from alluvial gravel aquifers. The

2016 [ground]waterborne Campylobacteriosis outbreak

(around 7,000 cases) that occurred at Havelock North,

New Zealand is a case example (Government Inquiry into

Havelock North Drinking Water, 2017; Gilpin et al., 2020).

The work presented in this paper was motivated by the need

for robust methods to evaluate groundwater contamination risks

associated with alluvial gravel aquifer settings that incorporate

OFG. Robust model-based assessments of contaminant risk in

these groundwater systems are based on geostatistical models

that characterize the structure of these rapid transport pathways.

In this paper we focus on the geostatistical characterization of

these most permeable pathways, and the implications of

uncertainty in this characterization.

1.1 Geostatistical methods in
hydrogeological modelling

There are many practical limitations to mapping the

structure of alluvial gravels at a resolution that can detect

OFGs. Heterogeneous aquifer datasets are almost always

sparse and incomplete, particularly in lateral dimensions

(Sanchez-Vila & Fernandez-Garcia, 2016). Consequently,

stochastic inversion methods, even when coupled with

distributed parameterizations, are unlikely to identify small-

scale highly heterogeneous pathways (Doherty & Moore,

2021). Because of this, we use stochastic frameworks to

characterize heterogeneity structure, based on geostatistical or

physical process-based modelling methods (e.g. Riva et al., 2006;

Riva et al., 2008; Ritzi & Soltanian, 2015; Scheibe et al., 2015;

Siena & Riva, 2020).

Physical process-based modelling methods simulate structural

aspects of alluvial deposits based on probabilistic representations of

lithological categories within a meandering river geometry, and are

informed by the sedimentary disposition of the system. Examples

include BCS-3D (Webb & Anderson, 1996), FLUVSIM (Deutsch &

Tran, 2002) and ALLUVSIM (Pyrcz et al., 2009). Geostatistical

models can be based on covariance or variogram structures for

continuously variable hydraulic properties (Deutsch & Journel,

1998). Other options, such as training image methods, including

Multiple-Point Statistics, can be used to represent more complex

geological environments that cannot be fully represented by two-

point covariance relationships (Strebelle, 2002; Huysmans &

Dassargues, 2009).

Where sharp interfaces occur between high and low

conductivity media, such as in aquifers with OFGs,

geostatistical models based on categorical variables can be

used to generate realizations of aquifer media. Categorical

methods include Sequential Indicator Simulation (SIS) which

relies on indicator variograms based on borehole lithological data

(Goovaerts, 1997; Deutsch & Journel, 1998), and Transition

Probability (TP) Simulation (Carle, 1999). TP simulation has

the advantage that it honors volumetric proportions, mean

dimensions and the connectivity patterns of the categorical

variables.

The choice of the most appropriate structural model of

heterogeneity largely depends on the features that control the

predictive response of concern (e.g., Jafarpour & Tarrahi, 2011;

Ciriello et al., 2013; Riva et al., 2015). We opted to use TP

simulation which has been shown to be superior for representing

the connectivity of high permeability pathways (Siena & Riva,

2020). TP simulation is also well-established and used in

numerous modelling studies, including groundwater modelling

studies, that rely on a geostatistical description of the spatial

dependencies of selected categories (e.g. Park et al., 2004;

Engdahl & Weissmann, 2010; Hansen et al., 2014; He et al.,

2014).

1.2 Direct and indirect data and sequential
conditioning

The sparsity of information with which to develop

geostatistical models of heterogeneity structure has motivated

efforts to combine ‘direct’ observations made of mapped

lithological properties with ‘indirect’ data (Refsgaard et al.,

2012; Carle & Fogg, 2020) that require another level of

interpretation that carries with it uncertainty. Pumping test

data (Harp et al., 2008; Harp and Vessilinov, 2010; Harp &

Vessilinov, 2012) and geophysical data (Engdahl & Weissmann,

2010; Koch, 2013; He et al., 2014; Zhu et al., 2016) are examples of

‘indirect’ observational data often used to condition and reduce

the uncertainty of geostatistical models. Indirect data relating to

dynamical physical processes such as flow and transport can be

extremely informative, since they provide a measure of

connectivity within the hydrogeological model (Renard and

Allard, 2013).
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Using information from indirect hydrogeologic data can

nonetheless impose a significant computational burden, as this

involves the comparison of field observations with groundwater

model simulation outputs within a stochastic or Bayesian

workflow (Jafarpour & Tarrahi, 2011; Ciriello et al., 2013;

Linde et al., 2015; Riva et al., 2015). Selection of the

conditioning method can also be problematic, potentially

degrading the geological realism of the conditioned

realizations when spatially distributed parameters are adjusted

in order to provide a match to field observations (Oliveira et al.,

2017; Chan & Elsheikh, 2020).

Sequential conditioning can be used to address the

computational burden described above, where some data

requires more computational processing effort than others

(Feyen et al., 2003; Hassan et al., 2009; Dorn et al., 2012).

Sequential conditioning commences by history matching to

datasets that require the least computational effort. Each

subsequent conditioning step is focused on a selection of

observations requiring increasingly greater computational

processing. Using this process allows the prior distribution to

gradually morph into a posterior distribution. We develop an

approach that harnesses the strengths, and mitigates the

weaknesses, of two distinct conditioning methods: stochastic

inversion and rejection sampling.

The stochastic inversion method uses a history matching

approach to condition the TP model parameters through

minimizing the residuals between the transition probabilities

derived from the TP geostatistical model and those derived

from the direct lithological data. The TP model parameters

are further conditioned using “greater than” and “less than”

constraints, via a rejection sampling methodology applied to the

indirect observations.

Conditioning of geostatistical models is easier to discuss

when adopting Bayesian nomenclature (Kennedy and

O’Hagan, 2002). Therefore, in the sections that follow the

geostatistical model parameters (facies lengths, and volumetric

proportions) are referred to as ‘hyperparameters’, to distinguish

them from ‘model parameters’ i.e., hydraulic properties of the

underlying aquifer system being analyzed. Probability density

functions of hyperparameters are thus used to describe the

uncertainty of the geostatistical model. Note that if alternative

geostatistical models were adopted the hyperparameters would

differ: e.g. for a variogram based geostatistical model, the

hyperparameters would comprise the sill, range and nugget

parameters.

1.3 Research objectives

This paper explores the implications of geostatistical model

uncertainty for a particle transport modelling problem in an

alluvial gravel aquifer, where transport function is determined by

the connected, small-scale OFG textural class (Dann et al., 2008;

Burbery et al., 2017; Theel et al., 2020). It also demonstrates the

potential of a Sequential Conditioning Approach, using a case

study which contains a uniquely detailed field dataset (consisting

of direct and indirect observations) that was initially described by

Burbery et al. (2017). This case study includes data from novel

smoke tracing experiments designed to characterize the

connectivity of OFG pathways. These data are particularly

valuable, given the advantages of conditioning to prediction-

salient information (White et al., 2014; Doherty, 2015). Using the

geostatistical model hyperparameter distribution derived from

the analysis, we explored the predictive implications of the

common practice of adopting a single most likely

geostatistical model to underpin a groundwater contamination

risk assessment.

The structure of the paper is as follows: in Section 2 we

provide some background to the case study field site and describe

the direct and indirect field observational datasets that were

compiled for the alluvial gravel aquifer model used in the study.

The mathematical methodologies and framework developed and

tested in this study are described in Section 3. In Section 4 we

present the results from our modelling analyses, whilst also

exploring and discussing some implications that the

equifinality of structural heterogeneity models have for

predictions of travel time in alluvial gravel aquifers. Section 5

presents our conclusions and discusses implications of these for

stochastic decision support modelling in practice.

2 Case study

The Canterbury Plains aquifer on the South Island,

New Zealand (NZ) covers an area of approximately 8,000 km2

and consists of sets of coalesced alluvial fans that were active

during the Quaternary period (Leckie, 1994; Bal, 1996; Ashworth

et al., 1999; Browne & Naish, 2003; Leckie, 2003). This extensive

aquifer, used for irrigation, industrial and potable water supply

(Bal, 1996; Brown, 2001) is ranked as the most valuable

groundwater resource in NZ (White, 2001). The general

sedimentary structure of the aquifer is characteristic of gravel

outwash deposits formed from large braided-river systems. The

Kyle field site (43.94338 S, 172.06788 E), from which the

observational datasets used in this study were obtained, is

located on the Rakaia River fan, on the coastal boundary of

the Canterbury Plains. At the last glacial maxima, the site would

have been positioned approximately mid-point on the Rakaia fan

(Browne & Naish, 2003).

2.1 Lithological mapping (direct
observational data)

A 3D portion of the alluvial deposits at Kyle has been

mapped, covering an area measuring 28 m x 20 m and to a
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depth of 6 m below the Rakaia fan surface. Mapping was

conducted from two cliff exposures (a sea cliff oriented

perpendicular to the presumed paleoflow direction and a

‘donga’, i.e. a steep-sided gully created by soil erosion, with a

face aligned 90° to the sea cliff), and nine large (1.2 m) diameter

boreholes (coded K1 to K9) that were drilled 5 m apart on a

3x3 uniform grid, 18 m inland from the cliffs (see Figure 1 inset).

The lithological examination is limited to the unsaturated zone.

However, these vertically-stacked gravel packages mapped near

the surface at Kyle represent a sample of the alluvial sequence

that forms the Canterbury Plains aquifer system. Therefore we

are able to make the assumption that this sample provides a

useful analogue model of a saturated gravel aquifer system.

Further details of the Kyle field site and investigative methods

are provided in Burbery et al. (2017).

Employing descriptive methods such as those described by

Koltermann & Gorelick (1996), Burbery et al. (2017) compiled a

map of the Kyle site adopting four lithological categories, being:

sand (S); sandy gravel (SG); open framework gravel (OFG) and

clay-bound gravel (CBG). Photographic examples of the four

lithological categories, as imaged at Kyle, are presented in

Figure 1. Particle size distribution data, and a description of

the geological depositional history for this alluvial system can be

found in Burbery et al. (2017). The relative compositions of the

lithological categories at the Kyle site are: S 5.1%, SG 67.8%, OFG

14.2% and CBG 12.9%.

OFG at the Kyle site predominantly occur as cross-strata

comprising packaged sets of alternating OFG and SG. The

thickness of the OFG lithological category is dependent on the

angle of the foresets and was observed to vary between 0.2 m and

1 m. The lateral extent of OFG seen in cliff exposures was more

than 25 m in some cases. Although less common, OFGs at Kyle

also feature as planar beds up to 0.3 m thick and 4 m–5 m wide.

From exposures observed on the donga face that is orientated

along the paleoflow direction, it is apparent that the planar beds

can extend for at least 15 m in length (Burbery et al., 2017).

On the basis of pumping and tracer test data, Dann et al.

(2008) established that typical hydraulic conductivities of OFG in

the Canterbury Plains alluvial aquifer system are two to three

orders of magnitude greater (i.e. more permeable) than those of

the other three categories (i.e. OFG have a saturated conductivity

of 1,498–10,646 m/day compared with a range for the other three

categories from 5.5 to 117.28 m/day). This is consistent with

Klingbeil et al. (1999) who described the average hydraulic

FIGURE 1
Box plot map of the Kyle site showing the spatial distribution of the four main lithological categories (textural classes), as identified on cliff
exposures and borehole walls. Site location, and themodel domain and grid that is used in the geostatistical and groundwatermodelling analyses, are
shown in inset of site plan. Representative photographic images of textural classes are included in the legend.
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conductivity of OFG being around 100 times greater than the

other alluvial categories studied. Dann et al. (2008) estimated that

this hydraulic conductivity contrast between lithological

categories results in approximately 98% of aquifer flow

occurring through these permeable connected OFGs.

Therefore, it is the connectivity of these rapid transport OFG

pathways that is relevant to the representation of pathogen

transport in aquifers (Fiori et al., 2013; Hunt & Johnson 2017).

We adopt a ‘forecast first’ approach to the development of the

geostatistical model (Doherty 2015; White 2017) and focus our

analysis on the connectivity of the OFG category identified from

observations to generate random realizations of the OFG and

other lithological categories at the scale of the numerical grid.

Assignment of hydraulic conductivity values reflected the order

of magnitude differences in conductivity between the most

permeable (OFG) and the next most permeable facies (S, SG,

CBG), resulting in a binary characterization of the hydraulic

properties within the aquifer system. While at first glance this

grouping may seem to overly simplify the geological

characterization described in Burbery et al. (2017), this

simplification has no impact on the predictions we are

making, given the contrast in permeability between the OFG

and the other lithological categories, which are considered to be

analogous to hydrofacies (Soltanian & Ritzi, 2014; Theel et al.,

2020).

2.2 Smoke tracer tests to determine
connectivity of OFG (indirect
observational data)

Three smoke tracer tests were conducted using the array of

open boreholes described to examine the interconnectedness of

OFGs at Kyle. The tests are documented in detail in Burbery et al.

(2017). In brief, they involved injecting smoke under a low

positive pressure into each of the centrally-located boreholes

K2, K5 and K8 for an extended period. The arrival time and

position of smoke emerging from OFG in neighboring boreholes

was then recorded. The results of the smoke experiments

confirmed that OFGs are truly ‘open’ since smoke was able to

travel rapidly between boreholes through OFGs. Connectivity

was found to be non-uniform in direction, reflecting both the

heterogeneity and anisotropy of the alluvial sediments. Figure 2

illustrates the connectivity between OFGs, as inferred from the

three smoke tracer tests at boreholes K2, K5 and K8.

The earliest arrival time for smoke transmitted between two

boreholes located 5 m apart was 48 s, along a co-set of planar

OFG strata running between K2 and K1 that were aligned with

the paleoflow direction. For all tests, fastest velocities

corresponded to the mean paleoflow direction, i.e. NNW-SSE

or y-direction (Figure 1). In some cases, no smoke was detected to

have travelled between adjacent boreholes, suggestive of no

apparent connectivity between the observed OFG strata.

When transmission between boreholes occurred, the latest

observed smoke arrival time was 30 min, between boreholes

K5 and K1. A specific result of the smoke tracer tests was the

lack of any observable hydraulic connection between OFG in test

borehole K5 and OFG mapped in both K8 and K9, to the north

(Figure 2).

The lithological data from borehole-logs, outcrops and

geological characterization (Figure 1), and the observed cross-

borehole connectivity from these smoke tracer experiment

results (Figure 2), provided the respective direct, and indirect,

observational data that were used to derive the geostatistical

model of the most permeable and least permeable categories in

this aquifer structure. The following sections describe the

processes and mathematical methods that utilized these

different types of information.

FIGURE 2
Schematic of smoke tracer test results. Arrows indicate connections between injection boreholes and observation points. The width of the
arrows indicates the relative strength of those connections of high conductivity pathways as inferred from the observed arrival times.

Frontiers in Earth Science frontiersin.org05

Moore et al. 10.3389/feart.2022.979823

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.979823


3 Methodology

3.1 Sequential conditioning of
heterogeneity structure models

The sequential conditioning approach provides a Monte

Carlo implementation of Bayes theorem and involves a

sequence of history matching steps. The initial step

focusses on the data which is the most rapid to process.

Subsequent conditioning steps are only applied to those

parameter ranges identified as plausible from the preceding

step, and targets data that is increasingly slower to process.

The approach has computational advantages over joint

inversion if assimilating information from multiple datasets

with one dataset involving a simulation model with long run

times (Feyen et al., 2003; Hassan et al., 2009).

Previous sequential conditioning studies have adopted a

single conditioning approach (Feyen et al., 2003; Hassan et al.,

2009; Dorn et al., 2012). We combine two stochastic inversion

approaches to further reduce the computation burden of

history matching to disparate datasets. Computationally

efficient stochastic inversion methods, such as randomized

maximum likelihood approaches, are used to condition

observation groups where possible. However, rejection

sampling is used if stochastic inversion risks degrading the

representation of important spatially defined geological

features, such as a connected flow pathway, as

demonstrated by Dorn et al. (2012) with observations of

cross-borehole connectivity in a fractured rock aquifer.

While rejection sampling is too computationally inefficient

for most groundwater modelling contexts, this burden is

alleviated when using it only in final conditioning steps

(Dorn et al., 2012; Linde et al., 2015; Cirpka & Valocchi,

2016; Carle & Fogg, 2020). In this way the different strengths

of conditioning methods can be employed where appropriate,

while the respective weaknesses of each method are mitigated.

We applied this sequential conditioning approach using

direct and indirect geological observations. Direct observations

were comprised of lithological log data and were processed using

a stochastic inversion approach. Indirect observations of cross-

borehole connectivity, derived from the case study tracer test,

were processed using rejection sampling.

3.2 Geostatistical model
Geostatistical models based on transition probability (TP)

simulation are used in a number of fields (e.g. Huang et al., 2017;

Li & Zhang, 2019) to characterize the distribution and

juxtapositional characteristics of heterogeneity, such as the

connected high permeability features of interest to this case

study. We adopted the T-PROGS software for our TP model

implementation (Carle (1999), which has been used widely in the

hydrogeological field. Carle (1999) defines a transition

probability, tij, as:

‘Given that a facies j is present at location x, what is the probability

that another (or the same) facies i occurs at location x+h’, or:

tij(h) � P{j occurs at x + h
∣∣∣∣i occurs at x} (1)

Borehole-log and outcrop data is catalogued into categories,

at regular depth intervals, allowing the juxtapositional

probabilities of lithological categories to be calculated. These

are summarized in matrices of transition probabilities at specific

lags (h), in the vertical (z) and horizontal directions, i.e. along the

mean paleoflow direction (y or dip direction) and transverse to

this direction (x or strike direction). The collation of these

transition probabilities at specified separation distances (lags)

can also be depicted as a transiogram (Figure 5). These transition

probability matrices form the lithological constraints in the

sequential conditioning approach.

From Carle & Fogg (1997), the mean length �L of the ith

category unit in a particular direction can be calculated as:

�Li � 1
rii

� [ztii (0)
zh

]
−1

(2)

where rii is the auto-transition rate, and tii is the auto-transition

probability.

A range of assumptions can be adopted to simplify the

calculation of transition probability matrices. Given the

emphasis of this study is on the impact of the geostatistical

representation of the connectivity of the high permeability

OFG category on the uncertainty, we adopt the simplifying

constraint of assuming that the probability of transition from

the ith to the jth category is solely dependent on the volumetric

probability of the jth facies as discussed in Harp and

Vesselinov (2010).

This allows the probability of a transition from one category

to another to be expressed as a function of the volumetric

proportions, p, and the mean lengths of the categories:

tij (h) � (1 − tii(h))
pj

1 − pi
f or j ≠ i (3a)

Which can be expressed for transition rates as:

rij � −rii
pj

1 − pi
f or j ≠ i (3b)

3.3 Conditioning using direct lithological
constraints with stochastic inversion

We adopted the Null Space Monte Carlo (NSMC)

procedure (Tonkin & Doherty, 2009), as implemented in the

PEST software suite (Doherty, 2016), which provides a close

approximation to randomized maximum likelihood methods.

This automated the task of exploring the range of TP model

hyperparameters that provides a fit to the empirical transition

probabilities. The objective function, Jlithology, used in the
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inversion procedure is the L2 norm, or sum of squared residuals

between the transition probabilities derived from the

geostatistical model and those derived from the lithological

data:

Jlithology � min βB∑M

i�1( ̂tki(h∅)(B) − tki(h∅))
2

(4)

where empirical transition probabilities tki(h∅) are calculated

directly from the lithology. The modelled transition probabilitieŝtki(h∅)(B), are derived from the TP model with

hyperparameters in the vector β which has upper and lower

limits as defined by B.M refers to the number of specified lags h∅
at which transition probabilities are calculated. The parameter

bounds B are informed by the estimates of mean category lengths

from the borehole and cliff observations and analyses in Burbery

et al. (2017). These mean lengths in the paleoflow, transverse and

vertical directions are the TP model hyperparameters being

estimated by the sequential conditioning approach (refer to

Table 1).

The following steps summarize this process of conditioning

the TP models, using stochastic inversion (also depicted in

Figure 3).

1. Generate empirical transiograms from the lithological logs at

specified lags (Eq. 1).

2. Draw realizations from a prior hyperparameter distribution of

the mean lengths in the paleoflow, transverse and vertical

directions of the OFG lithological category.

3. Derive TP model based on the mean lengths, and the

calculated textural class proportions from lithological logs

for the same specified lags as in Eq. 1) above (Eqs 3a and 3b).

4. Compare modelled and empirical transition probabilities at

specified lag distances (Eq. 4).

5. Adjust hyperparameter values using stochastic inversion

algorithm until a good fit between modelled and measured

transition probabilities is obtained.

6. Repeat the process until first and second moments of the

distribution of mean OFG lengths have stabilized.

3.4 Conditioning using indirect
hydrological constraints with rejection
sampling

We adopted a straightforward implementation of rejection

sampling, consistent with the Generalized likelihood uncertainty

estimation (GLUE)method introduced by Beven&Binley (1992). It

relies on generating multiple realizations from a prior probability

distribution, running the model with each realization, and

comparing model outputs with the observations. Each realization

that does not provide a good fit tomeasured observations is rejected.

However, the ‘indirect’ nature of the observations of cross-

borehole connectivity requires many additional steps before the

information in these observations can be used to condition TP

model hyperparameters. For every hyperparameter set we generate

multiple aquifer heterogeneity realizations. Each realization is then

FIGURE 3
Flow chart showing the steps involved in the sequential Monte Carlo modelling procedure.
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converted to a hydraulic parameter field and used in a groundwater

model simulation. Based on work in Dann et al. (2008 and 2009), this

assignment of hydraulic conductivity values forOFG is 100 times that

of the other three categories. The groundwatermodel simulates a flow

process that provides outputs that correspond to the observations of

cross-borehole connectivity. The details of this groundwater model

are discussed in the following section.

Cross-borehole connectivity observations can be denoted as

fluxi. When a model-to-measurement comparison is made, it is

assessed according to an acceptance metric ∅hydrology(θ)which
defines the sum of differences between the observed and

modelled cross-borehole fluxes across all nobs observed fluxes,

i.e. the sum of squared residuals or L2 norm:

∅hydrology(θ) � ∑nobs

i�1 (f luxi(θ) − f luxi)2 (5)

where θ defines the vector of hydraulic parameters defining the

realization, which are generated from a specific geostatistical

hyperparameter set and random seed. An acceptable fit threshold

is applied to the fits between modelled and observed cross-borehole

fluxes, defined as ∅hydrology(max ). This is used to define a set of

acceptable realizations, Ω(∅hydrology(θ) ) as:

Ω(∅hydrology(θ) ) � { 0, ∅hydrology(θ) >∅hydrology(max )
1,∅hydrology(θ) ≤∅hydrology(max )

(6)

Note that this set will vary if the acceptance threshold is

varied.

Collating the heterogeneity realizations that meet the

acceptance threshold in Eq. 6 provides an acceptance

probability P̂A for each mean hydrofacies length

hyperparameter set Eq. 7:

P̂A � 1
Nr

� ∑Nr

i�1Ω(∅hydrology(i) ) (7)

where Nr is the total number of realizations.

In summary, this rejection sampling process requires the

generation of both hyperparameter realizations (also

described as hyperparameter sets in the discussion that

follows to avoid confusion with the aquifer heterogeneity

realizations) as well as heterogeneity realizations and the

hydraulic conductivity realizations based on them. The

following steps summarize this process (as depicted in

Figure 3):

7. Construct a groundwater flow model that simulates a flow

field to represent the cross-borehole connectivity

observations revealed by the smoke tracer test.

8. Select a subset of hyperparameter realizations that span the

range of mean OFG length values defined in step 6 and

generate an ensemble of heterogeneity realizations on the

basis of each selected hyperparameter realization.

9. Assign hydraulic parameter values to the high and low

conductivity categories of each realization, import these

into the flow model, and run the flow model simulation

to provide model outputs that correspond to cross-borehole

observations.

10. Compare model outputs with these indirect observations

(Eq. 5) and retain or reject the heterogeneity realization

depending on whether the model-to-observation fit is

sufficient to meet the selected acceptance criteria (Eq. 6).

11. Collate those heterogeneity realizations that meet the

acceptance criteria and calculate an acceptance probability

for each geostatistical model hyperparameter set.

12. For each of the selected subset of geostatistical

hyperparameter realizations, return to Step 9 and

continue until all realizations have been completed.

3.5 The flow model
Heterogeneity realizations were generated at a regular fine-

scale grid discretization which covered the case study site (Step

TABLE 1 Rate of producing plausible fields for 21 alternative
geostatistical model hyperparameters, and the OFGmean lengths
in the paleoflow (Ly) and perpendicular to paleoflow (Lx) directions.
Representative samples from the range of plausible geostatistical
model hyperparameters identified in the initial conditioning step
were selected for prediction uncertainty analysis are identified by
a suffix (a to i).

OFG mean length Ly2/Lx,
(m)a

Acceptance
probabilityP̂A

Paleoflow
direction,
Ly (m)

Orthogonal to
paleoflow
direction,
Lx (m)

1.99 4.86 0.81a 0

0.06 0.01 0.3 0

1.26 10.2 0.16 0.005

1.39 3.09 0.6 0.03

1.26 10.41 0.15 0.04

1.25 3.93 0.4 0.08

1.47 2.19 0.98 0.12

1.27 2.05 0.8 0.2

1.26 2.21 0.71 0.22

1.26 2.06 0.77 0.28

1.26 1.95 0.81 0.44

2.72 1.67 4.43 1.06

0.99 0.02 56.1b 2.6

2.49 1.34 4.6c 8.0

1.08 0.02 73.2d 11.7

1.12 0.02 56.9e 17.4

0.93 0.01 87f 23.0

0.96 0.03 31g 26.7

2.84 0.23 35h 38.5

6.47 0.26 158.6 80.0

2.37 0.03 178.1i 80.1

*The suffix identifies the TP, models evaluated in particle track modelling.
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8 above): an area of 40 m by 50 m by 10 m, with a grid cell

dimension of 1 m by 1 m in the horizontal direction, and 0.1 m in

the vertical direction. As noted above, each category (i.e. OFG

and the combined SG, S and CBG category) was assigned a

hydraulic conductivity value that represented the mean value for

that category, transforming the heterogeneity realizations to

hydraulic conductivity field realizations. Note that the cross-

borehole flow observations are dependent on the relative

hydraulic parameter values, rather than absolute hydraulic

parameter values, and in this case the OFGs have a

FIGURE 4
Modelled vertical transition probabilities (black line), and calculated transition probabilities from the lithological data (black dots) at the Kyle site
for two statistically valid TPmodels are shown in the left and right columns. The left and right-hand columns correspond to suffix ‘b’, and ‘i’ in Table 1.
Below the transiograms are three heterogeneity realizations relating to the TP models shown in the transiograms.
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conductivity value that is three orders of magnitude higher than

the other three textural classes.

Each hydraulic conductivity realization was used in a series of

flow model simulations, implemented using the USGS software

MODFLOW (Harbaugh et al., 2000), where cross-borehole

connectivity observations derived from the smoke tracer test

were modelled as being analogous to groundwater flow. The

relative connectivity derived from the smoke tracer tests, was

simulated using a steady-state flow field. In this flow field the

boreholes were represented as constant head cells. For each of the

smoke tracer experiments, the smoke injection borehole was

assigned a positive head and remaining boreholes were assigned a

zero head. No-flow boundaries were assigned around the edge of

the model domain. The resulting pattern of cross-borehole flows

was evaluated. This approach was possible because it was not

necessary to simulate the smoke particle movement, as only the

cross-borehole connectivity observations are used to screen out

improbable heterogeneity structures in this study.

Using MODFLOW to simulate the flow of fluids other than

groundwater, such as vapor transport in the unsaturated zone, relies

on the analogies between these two flow problems (USEPA, 1995),

and is appropriate where differential pressures are low, as

demonstrated in Massmann (1989). This approach has also been

used when simulating oil flows (Hsieh, 2011), when simulating

multiphase flow in coal seam gas problems (Herckenrath et al.,

2015), and can be used in advection-dispersion contexts (Rubbab

et al., 2016).

Using this approach, three flow simulations were undertaken,

representing each of the smoke injection bore tests depicted in

Figure 2. This approach was both sufficient for simulation of the

cross-borehole flow connectivity observations and provided a

convenient and rapid-to-deploy surrogate for smoke transport

simulation. Individual realizations were considered ‘plausible’ if the

sumof the simulated head dependent discharges corresponding to the

three most dominant connections, depicted in Figure 2, comprised

50% or more of the total discharge. The approximate and categorical

nature of this acceptance criteria implicitly accounted for

measurement and conceptual uncertainty that would impact on

the precision of model to measurement fits and resembles Dorn

et al. (2012) who used observations of the degree of fracture

connectivity with similarly approximate acceptance criteria.

3.6 Assessment of prediction uncertainty
using single and multiple plausible TP
models

The implications of adopting a single geostatistical

model are explored for simulations of groundwater

transit times. The transit time prediction was simulated

with a particle moving through a saturated steady-state flow

field, with fixed head boundaries at opposite west and east

sides of the model domain, and no flow boundaries at the

north and south sides. The flow field was derived from a

hydraulic property field relating to the aquifer

heterogeneity realizations generated in the same manner

as Step 9 above. These predictions were generated for

10 hyperparameter realizations which spanned the range

of mean length hyperparameters identified with low to high

acceptance criteria in the rejection sampling step. A total of

1,000 heterogeneity realizations were generated for each of

the ten selected hyperparameter sets.

The groundwater model domain and hydraulic property

values were the same as those used to simulate the cross-

borehole connectivity observations described above. Constant

head cells were placed at the upstream and downstream extent

of the model domain. MODFLOW (Harbaugh et al., 2000) was

used to simulate this groundwater flow field, and the transit

time of the particle was simulated using the MODFLOW ADV

package (Anderman & Hill, 2001). Transit time probability

distributions for selected geostatistical model hyperparameter

realizations were then explored.

4 Results and discussion

We examine and discuss the results of the numerical

experiments from this study within a contaminant transport

predictive context. Contaminant transport is very sensitive to the

disposition of highly permeable pathways in aquifer systems (Lee

et al., 2007; Fiori, & Jankovic, 2012; Soltanian & Ritzi, 2014; De

Barros et al., 2016; Sanchez-Vila & Fernàndez-Garcia, 2016;

Theel et al., 2020). This is particularly so for pathogen

transport where risks are largely related to the fastest transit

times through an aquifer, as pathogen numbers reduce over time

at a rate governed by the half-life of the pathogen of concern

(Hunt & Johnson, 2017).

Specifically, this section discusses the performance of the

methodology used to condition the geostatistical model of OFG

rapid transport pathways. The stochastic exploration of the ill-

posed geostatistical model discussed in this section has similarities

to the approaches described in Zhu et al. (2016), and Harp &

Vesselinov (2012). This section also discusses the implications of

the remaining geostatistical model uncertainty for pathogen transport

predictions. The OFG lithological category controls how much and

how quickly groundwater flows in our case study (Dann et al., 2009),

and the geostatisticalmodel hyperparameters correspond to themean

lengths of this category in the paleoflow direction (y or dip direction),

transverse to this direction (x or strike direction), and the z-direction.

4.1 Sequential conditioning: Performance
of initial stochastic inversion step

A total of 130 TP model hyperparameter realizations were

generated from the stochastic inversion process, with the mean
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and standard deviations of the initial conditioning of the

hyperparameter distribution having stabilized with this

number of conditioned realizations. Each of the conditioned

hyperparameter realizations resulted in modelled-to-measured

transition probability fits with correlation coefficients of

approximately 0.8. The standard deviations of the TP model

hyperparameters (mean lengths of OFG in the paleoflow,

transverse and vertical directions) were significantly reduced

in this initial conditioning step from the reasonably

unconstrained prior in the log domain of three log(m) in the

x and y directions and one log(m) in the z-direction to

0.14 log(m) in the x-direction, 0.2 log(m) in the y-direction

and 0.22 log(m) in the z-direction.

Despite the substantial reduction in the uncertainty achieved

through the initial conditioning step, the remaining hyperparameter

uncertainty can result in very different heterogeneity structures

(Figure 4). For example, Figure 4 (upper part of Figure 4), shows

two modelled-to-measured transiogram fits, where OFG mean

lengths in the paleoflow y-direction (Ly) were 0.99 m for the left-

hand side of the figure and 2.37 m on the right-hand side. A

comparison of the heterogeneity realizations corresponding to

these two hyperparameter sets (lower part of Figure 4) shows

more elongated connected OFGs in the right-hand side of the

plot, than those on the left.

The non-uniqueness of the TP model hyperparameters, as

depicted in Figure 4, reflects the lack of information regarding the

OFG category mean lengths in the lateral direction (Lx). Non-

uniqueness of geostatistical models is acknowledged and

discussed in several studies (Harp & Vessilinov, 2012; Koch,

2013; He et al., 2014; Siena & Riva, 2020). Despite this, the impact

of geostatistical model equifinality on the quantification of the

uncertainty of groundwater model predictions of interest is

seldom considered by practitioners in decision support models

(Sanchez-Villa & Fernandez-Garcia, 2016). A component of the

barrier to the uptake of stochastic methods relates to the

computational burden of their implementation (Linde et al.,

2015).

4.2 Sequential conditioning: Performance
of rejection sampling step

A selection of 21 hyperparameter sets were selected so

that they spanned the OFG hyperparameter range identified

in the first conditioning step. Details of these

21 hyperparameter sets are listed in Table 1.

Heterogeneity realizations were then generated, with more

than 17,000 heterogeneity realizations being generated for

each of the selected hyperparameter sets. Each realization

was then used in a flow simulation of cross-borehole

connectivity. The proportion of flow simulations,

associated with each heterogeneity realization, that met

the cross-borehole connectivity acceptance criteria ranged

from 0 to 81%. This approach of ranking the plausibility of

TP model hyperparameter sets using a system response-

based acceptance criteria was also used by Harp &

FIGURE 5
Relationship between the proportion of realizations meeting the smoke tracer plausibility test (Acceptance probability) and a ratio Ly

2/Lx, which
is the squared OFG category mean length in the paleoflow direction (Ly) and perpendicular to the paleoflow direction (Lx). This relationship is shown
for 21 TP models examined for the Kyle case study as summarized in Table 1.
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Vesselinov (2010) and Dorn et al. (2012), when conditioning

geostatistical facies and fracture network models

respectively.

Examination of the relationship between acceptance

probabilities and the disposition of the OFG provided

important information. The range of the mean vertical

thickness (Lz) of the OFG category was reasonably well

constrained on the basis of the lithological data, and varied

from 0.13 m to 0.43 m, with an average of 0.23 m. These

small variations in these OFG thicknesses did not impact on

the plausibility of hyperparameter sets, whereas the lateral (Ly)

and transverse (Lx) OFG dimensions did.

Figure 5 shows the relationship between OFG category mean

lengths and acceptance probabilities, expressed using a ratio of

the squared mean length in the paleoflow y-direction (Ly) and the

x-direction (Lx). The ratio between Ly and Lx can convey the

relationship between the relative mean lengths in the x and

y-directions, whereas the absolute magnitude of the mean length

is incorporated into the ratio by squaring the Ly term. By ranking

the mean OFG dimensions by their propensity to produce

realizations which generate model outputs that are consistent

with the indirect observations, additional information is

provided about the spatial disposition of the OFGs.

Various relationships between acceptance probability and

the mean length hyperparameters were analyzed to explore this

information. The absolute magnitude of these ratios was found to

be important when simulating the cross-borehole flows,

correlating strongly with acceptance probabilities. Long and

narrow OFGs, elongated in the paleoflow direction, were

found to be positively correlated with higher acceptance

probabilities (Figure 5; Table 1). In contrast, small OFG

lengths in the paleoflow direction, or large OFG widths

(direction orthogonal to paleoflow), had very low acceptance

probabilities.

Table 1 lists the OFGmean lengths in the paleoflow direction,

(Ly), and orthogonal to this direction, (Lx), for the 21 selected

hyperparameter sets. It also lists the Ly
2/Lx ratio and acceptance

probabilities, (P̂A ) for the 21 selected hyperparameter sets, which

are also depicted in Figure 5. Of the realizations summarized in

Table 1, two different geostatistical models achieved the highest

acceptance probability of 80%; these occurred for the models

which had a Ly
2/Lx ratio of 178 and 158.6. These ratios

corresponded to mean lengths between 2.37 m and 6.47 m in

the paleoflow y-direction (Ly) and mean widths of 0.03 m–0.26 m

in the x-direction (Lx). These acceptance probability figures

indicate that the lack of OFG connectivity in the direction

orthogonal to paleoflow (x-direction) was as important as the

connectivity in the paleoflow y-direction when reproducing the

cross-borehole connectivity observations. This strongly

directional dependent nature of the OFG connectivity was not

indicated by the lithological logs alone. Some of the other TP

models listed in Table 1, while not producing such high

acceptance probabilities, still provided some realizations which

meet the acceptance criteria. Therefore, those geostatistical

model hyperparameter sets cannot be discounted as valid.

The overall greater connectivity of the OFG in the paleoflow

direction across the range of hyperparameters explored is

depicted in probability plots as shown in Figure 6. Figure 6A

shows the probability of OFGs occurring for all selected TP

models, denoted ‘a’ to ‘i’ in Table 1, spanning the range of

acceptance probabilities from 0 to 80%. A probability of one

occurs where OFGs were observed directly in the lithological

logs, as depicted in Figures 6A and 6B, with probabilities

approaching one clustered around borehole locations. With

greater distance from the boreholes, these probabilities

gradually reduce to background levels of 0.14, representing

the bulk proportion of OFGs at this site.

Figure 6B depicts the probability of OFGs occurring in any

model cell, for a single TP model (denoted as ‘a’ in Table 1) which

corresponds to an acceptance probability of zero. Figure 6B depicts

wider OFGs in the direction orthogonal to the paleoflow direction.

These wider OFG’s would tend to allow greater cross-bore

connectivity orthogonal to the paleoflow direction, which is

inconsistent with the smoke tracer test observations.

Harter (2005), Fogg et al. (2000), and Fogg & Zhang (2016)

discuss how the upper 12–28% of a hydraulic conductivity

distribution will tend to be fully connected in 3-D created

random fields. This proportional range of high conductivity

facies encompasses the bulk proportion of OFGs in this study.

Fogg & Zhang (2016) assert that this connectivity will lead to

laterally and vertically extensive rapid transport pathways. The

OFG probabilities shown in Figure 6A provide an indication of

the disposition of such connected pathways.

4.3 Sequential conditioning summary
The sequential conditioning approach adopted, combining

stochastic inversion and rejection sampling was able to support

the conditioning to direct and indirect geological observations.

Rejection sampling revealed the anisotropy of the OFGs more

fully and was required only when conditioning to the cross-bore

flow observations, to adhere to the conceptual model for geologic

heterogeneity. Many more model runs would have been required if

rejection sampling had been applied as part of a joint inversion

approach. This study provides a demonstration of using a sequential

conditioning approach comprised of two history matching methods

to successfully negotiate the pitfalls of numerical inefficiency on one

hand and degradation of the geological model on the other.

4.4 Implications of geostatistical model
equifinality for contaminant risk assessments

Particle tracking simulations are often used to assess the risks

associated with rapid transport rates of pathogens in

groundwater (Hunt & Johnson, 2017). We adopted this

approach when assessing the impact on transit time

predictions incurred by adopting a single geostatistical model.

In total, 1,000 realizations were used from selected geostatistical
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models (identified as (a) to (i) in Table 1). This subset of nine out

of 21 hyperparameters sets explored were selected to span the

range of acceptance probabilities identified.

The distribution of particle paths simulated on the basis of

each realization, that were generated from the nine selected TP

model hyperparameter sets, are mapped in plan-view in Figure 7.

The corresponding acceptance probability listed in Table 1 is also

noted in Figure 7 for each model, with model (i) having the

highest acceptance probability of 80%. Blue particle paths

correspond to all realizations generated for each

hyperparameter set, while red particle paths correspond to

only those realizations which met the cross-borehole

acceptance criteria. Figure 7 shows particle tracks have less

lateral spread and are more closely aligned with the

groundwater flow direction for those models associated with

higher acceptance probabilities. This is consistent with the

narrow and longer disposition of OFG pathways identified

through conditioning to the cross-borehole connectivity

observations.

The transit times corresponding to the particle tracks shown

in Figure 7 were collated and are summarized in the box and

whisker plot of Figure 8. Note that these times are normalized by

using a porosity value that scales the maximum travel times for

hyperparameter set (i) to be approximately 1 day, allowing the

relativity of these travel times to be depicted rather than their

absolute magnitude. For example, the hyperparameter set (c)

results in a maximum travel time that is 500% greater than that of

the hyperparameter set (i). The hyperparameter set (i) in the

FIGURE 6
OFG probability models showing the spatial probability of OFGs occurring at a probability of greater than 0.25: (A) for combined realizations
from TP models labelled ‘a’ to ‘I’ in Table 1; and (B) for realizations from a single TP model labelled a0 in Table 1.
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bottom right of Figure 8 provides the fastest particle travel times,

and also provides the highest acceptance probability.

A comparison of the results from the other eight

hyperparameter sets (a to h), is illuminating. It shows that

particle transit times which met the cross-borehole acceptance

criteria can fall well outside the range defined by the

hyperparameter set (i) which had the highest acceptance

probability. This has implications for analysis of predictive

uncertainty. An analysis of transit time based on a single

geostatistical model hyperparameter set with the highest

acceptance probability, could significantly under-estimate

the transit time uncertainty. Instead, a robust uncertainty

analysis may need to consider predictions simulated from

realizations generated from TP model hyperparameter sets

with lower and higher acceptance probabilities. Therefore,

while conditioning can reduce geostatistical model

uncertainty, the results indicate that multiple plausible

geostatistical models need to be considered for a prediction

of concern in decision support modelling. This issue was also

raised in Harp & Vessilinov (2012) when examining the

quantification of the uncertainty of aquifer drawdown

predictions.

This has practical implications for model-based risk

assessments, and highlights the importance of considering the

specific prediction being made when selecting geostatistical

models. For this case study, when simulating pathogen

contamination risks, the greatest risks would be exposed using

model hyperparameter set (i), and would not have been exposed

using model (b). If instead the concern had been related to

inefficient use of land, due to over estimation of source protection

zone areas, the greatest risk would be exposed by adopting model

hyperparameter sets (b) or (f).

4.5 Additional considerations

In other prediction uncertainty studies based on TP

geostatistical models, it may be important to also represent

the variability of hydraulic properties within a defined

category. Riva et al. (2006) found that representing hydraulic

conductivity variability within a category could led to elongated

capture zones, where this variability was being used to represent

small-scale preferred flow paths. In contrast, Copty & Findikakis

(2002) found that internal variability of hydraulic conductivity

within defined categories had no significant impact on the

predictions of a solute particle transport.

Those two studies exemplify the fact that any requirements

for representing inter-category variability are context specific.

Where realizations have been generated at significantly larger

scales than the hydraulic property variability occurs, the

FIGURE 7
Particle tracks for selected TP models (a–i) are shown in blue. Particle tracks for plausible realizations for each model are shown in red. The
acceptance probability for each of the figures are shown alongside the relevant model label.
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geostatistical model is upscaled, and hence inter-category

variability may be required if the prediction is sensitive to this

variability. The study reported here sought to represent the fine

scale detail of the permeable connected OFG category,

populating a very fine model grid to explicitly represent

preferred pathways. Therefore, the need to represent inter

category variability was avoided in this study.

The 1 m by 1 m grid discretization used in this study required

only slight upscaling of the transition probabilities in the

x-direction, perpendicular to the paleoflow direction. The

stochastic nature of prediction specific heterogeneity at field

scales was not addressed in this study and remains a research

challenge (Fogg et al., 2000; Fogg & Zhang, 2016; Doherty &

Moore, 2019). Initial explorations into this field of research

include hierarchical nested model frameworks (Li et al., 2006;

Sreekanth & Moore, 2018), or the hybrid multiscale methods

outlined in Scheibe et al. (2015). Local and global upscaling

approaches can be used to derive the field scale versions of these

stochastic models of aquifer heterogeneity if a robust fine-scale

characterization of the heterogeneity exists (Fengjun et al., 2003;

Chen, 2009; Zhou et al., 2010; Li et al., 2015; Soltanian et al., 2015;

Li & Durlofsky, 2016).

5 Conclusion

Groundwater model predictions of contaminant transport,

particularly pathogen contaminants, are sensitive to small-scale

high permeability pathways. The ability to improve the

characterization of geostatistical models that are used to

describe these rapid transport pathway distributions is central

to improving models used for water management decision

support. However, the extent to which uncertainties in

geostatistical models can influence the outcomes of a

contaminant transport risk assessment is not well understood

and is typically neglected in modelling practice.

In this study we have put considerable effort into conditioning

geostatistical model hyperparameters and exploring their uncertainty,

but it is common practice to adopt a single geostatistical model

parameterization. We demonstrate that the selection of a single

FIGURE 8
Box andwhisker plots showing relative particle exit-times for TPmodels (a–i) together with their combined times (all). The ‘suffix represents the
exit-times derived from the plausible realizations for each TP model. Box and whiskers represent the minimum, maximum and lower and upper
quartile of the particle exit-times.
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geostatistical model, without consideration of its relevance to the

predictions that matter, may prevent the simulation of real predictive

possibilities, undermining the quantification of risks. Risk based

assessments may need to consider alternative geostatistical models

in the context of particular types of predictions (e.g. predictions

dependent on time of travel) to guarantee robust decision support.

Conditioning with both direct and indirect aquifer

information can mitigate the impact of sparse geological data,

allowing the uncertainty of geostatistical models to be

significantly reduced. In this study the detailed lithological

study documented in Burbery et al. (2017) supplemented by

the observations of cross-borehole connectivity from smoke

tracer tests, enabled geostatistical models of the risk salient

aspects of OFG pathways in alluvial gravels to be defined i.e.

the connectivity of the OFG rapid transport pathways. To the

best of our knowledge, no studies combining fine detailed

lithological logs from alluvial deposits with in-situ

measurements of the connectivity of rapid transport pathways,

have previously been used to derive a geostatistical model of

small-scale high permeability groundwater pathways. The fine-

scale characterization of highly permeable OFG pathway

structure, made accessible by this study, provides a much-

needed basis for the assessments of risk in these contexts.

The significant computational burden involved when

conditioning geostatistical models with direct and indirect data is

made more challenging if efficient conditioning methods risk

degrading the geological realism of the geostatistical model. To

address this, we developed a sequential conditioning approach

that combines alternative history matching methods. This

approach enables each dataset to be conditioned with the history

matchingmethod best suited to that data. Datasets that involvemore

processing are scheduled for processing in later steps, thereby

supporting better management of the computational load.

This work also provides a basis for future research. The fine-scale

characterization made accessible by this study provides a much-

needed basis for the analysis of upscaled hydraulic parameters to

field scales that account for the presence of OFG pathways when

assessing the risk of early arrival times of pathogen contaminants.

With better characterization of geostatistical models of rapid

transport pathways, we can more reliably model groundwater

flow and contaminant transport and provide improved

environmental decision support at a range of scales.

The particle tracking predictive scenario discussed in this

paper demonstrates the implications of the geostatistical model

uncertainty in one specific predictive context. Future research

may also explore an advection-dispersion transport predictive

simulation to assess the implications of geostatistical model

uncertainty for transport predictions that are more affected by

factors such as dispersion or chemical reactions.

In summary, the results of this study illustrate the importance of

considering geostatistical uncertainty, in the context of specific

predictions. Adoption of a single geostatistical model can result

in realistic predictions being overlooked. Prediction specific

geostatistical models need to be selected, such as those of rapid

transport pathways explored in this study, to ensure robust

assessments of risk. Combining acceptable realizations from

multiple credible geostatistical models, to ensure that the true

predictive uncertainty range is conveyed, may be required.

Alternatively, selection of a worse-case geostatistical model for a

particular prediction could be adopted. This has important practical

implications for uncertainty quantification and history matching

when using ensemble-based methods, which are based on

geostatistical models to generate prior parameter distributions.
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