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A B S T R A C T   

A groundwater monitoring network surrounding a pumping well (such as a public water supply) allows for early 
contaminant detection and mitigation where possible contaminant source locations are often unknown. This 
numerical study investigates how the contaminant detection probability of a hypothetical sentinel-well moni
toring network consisting of one to four monitoring wells is affected by aquifer spatial heterogeneity and 
dispersion characteristics, where the contaminant source location is randomized. This is achieved through a 
stochastic framework using a Monte Carlo approach. A single production well is considered that results in 
converging non-uniform flow close to the well. Optimal network arrangements are obtained by maximizing a 
weighted risk function that considers true and false positive detection rates, sampling frequency, early detection, 
and contaminant travel time uncertainty. Aquifer dispersivity is found to be the dominant parameter for the 
quantification of network performance. For the range of parameters considered, a single monitoring well 
screening the full aquifer thickness is expected to correctly and timely identify at least 12% of all incidents 
resulting in contaminants reaching the production well. This proportion increases to a global maximum of 96% 
for a network consisting of four wells and very dispersive transport conditions. Irrespective of network size and 
sampling frequency, more dispersive transport conditions result in higher detection rates. Increasing aquifer 
heterogeneity and decreasing aquifer spatial continuity also lead to higher detection rates, though these effects 
are diminished for networks of 3 or more wells. Statistical anisotropy has no effect on the network performance. 
Earlier detection, which is critical for remedial action and supply safety, comes with a significant cost in terms of 
detection rate, and should be carefully considered when a monitoring network is being designed.   

Introduction 

Public water supply wells are monitored at regular intervals for 
various water quality indicators to detect pathogen, nutrient and 
chemical contamination that can occur from agricultural and urban 
activities. However, despite these measures, waterborne outbreaks are 
regularly reported in North America, Europe and elsewhere (Moreira 
and Bondelind 2016; Onyango et al. 2015), indicating that testing the 
production well alone does not provide sufficient warning for mitigation 
actions to be successful. Furthermore, in areas of significant seismic 
activity and following large earthquake events, groundwater is prone to 
pollution from damaged wastewater infrastructure (Ishii et al. 2021; 
Kang et al. 2013; Kobayashi et al. 2021; Sarikaya and Koyuncu 1999) 
and changes to the permeability of aquifer and aquitards (Elkhoury 
et al. 2006; Zhang et al. 2019; Liu et al. 2010), that may affect 
groundwater quality and safety (Nakagawa et al. 2021; Wang et al. 

2016; Wang et al. 2004). 
A common protective measure is to restrict the land use surrounding 

supply wells (USEPA 1987), however complete restriction is often 
impractical or impossible (particularly in urban areas), and the full 
extent of the well capture zone is almost always uncertain (Frind and 
Molson 2018). The use of a monitoring network surrounding a supply 
well allows for early detection and remediation (Nowak et al. 2015) 
that, depending on the contaminant, can include various treatment 
techniques such as adsorption (Fang et al. 2022), permeable reactive 
barriers (Burbery et al. 2020; Bortone et al. 2019) and biological tech
niques (Da’ana et al. 2021; Gibert et al. 2022). However, the network 
success rate depends on several factors such as the number and location 
of the sentinel wells and the sampling frequency (Bode et al. 2016; 
Bolster et al. 2009; Papapetridis and Paleologos 2012; Bode et al. 2018). 

The design of a monitoring system typically aims to maximize 
contamination detection rates to minimize establishment and 

* Corresponding author. 
E-mail address: theo.sarris@esr.cri.nz (T.S. Sarris).  

Contents lists available at ScienceDirect 

Water Research 

journal homepage: www.elsevier.com/locate/watres 

https://doi.org/10.1016/j.watres.2022.118485 
Received 26 January 2022; Received in revised form 4 April 2022; Accepted 19 April 2022   

mailto:theo.sarris@esr.cri.nz
www.sciencedirect.com/science/journal/00431354
https://www.elsevier.com/locate/watres
https://doi.org/10.1016/j.watres.2022.118485
https://doi.org/10.1016/j.watres.2022.118485
https://doi.org/10.1016/j.watres.2022.118485
http://crossmark.crossref.org/dialog/?doi=10.1016/j.watres.2022.118485&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


Water Research 218 (2022) 118485

2

maintenance costs (i.e. minimize the number of sentinel wells and 
sampling frequency required), and to detect contamination as early as 
possible so that mitigation options can be implemented before con
taminants reach the production well (Nowak et al. 2015; Bode et al. 
2016). For landfill monitoring applications the design objectives often 
take the form of minimizing the plume remediation cost (Storck et al. 
1997; Hudak 2001, 2002, 2005; Bierkens 2006; Salamon et al. 2006; 
Mahjouri and Shamsoddinpour 2016). Additional uncertainty arises 
when the location of the contaminant source is unknown, and the 
transport velocities vary greatly due to aquifer heterogeneity. The con
flicting objectives result in a multi-objective optimization problem that 
needs to account for these uncertainties. 

Several site-specific studies have addressed the optimization prob
lem using a number of different formulations of the objective function 
(see discussion in Bode et al. 2016, and Sreekanth et al. 2017), while 
Winter and Tartakovsky (2008) and Bolster et al. (2009) propose a 
probabilistic risk assessment framework that represents the progress of 
contamination as a Markovian sequence based on a rare event statistical 
approximation. The common ground of these studies is that the source 
location is either known or randomly occurring within high-risk regions, 
such as within a landfill. There is little discussion in the literature on the 
effect of uncertainty on the optimal network design. Randomly occur
ring instantaneous source locations have been investigated numerically 
by Yenigül et al. (2005) who concluded that transverse dispersivities 
have significant influence on the reliability of monitoring arrays, while 
Papapetridis and Paleologos (2011) evaluated the effect of sampling 
frequency and heterogeneity level on the contaminant detection prob
ability from a landfill, using sentinel well arrays with predetermined 
geometries, and concluded that detection probability decreases with 
increased heterogeneity. They proposed a risk function that accounts for 
action lag (time between detection and mitigation implementation) and 
investigated how increased lag can affect the system performance. 
Yenigül et al. (2013) considered a random permanent contaminant 
source originating from a landfill and concluded that a large number of 
monitoring wells near the potential source would be preferable, but 
when installation and operating costs are high, optimal solutions lead to 
smaller numbers of wells at greater distances from the source. Bode 
et al. (2016) considered quality monitoring networks in heterogeneous 
well capture zones, and they attempted to simplify the problem of 
random contamination sources with the introduction of a line of attack 
near the production well. This simplification led to the suggestion that 
very high numbers of monitoring wells may be required, while no 
consideration had been given to how the number of wells and contam
inant detection rates may be affected by aquifer heterogeneity. 

More recently, de Barros et al. (2016) analyzed the attenuation 
characteristics of a non-conservative contaminant in heterogeneous 
formations and concluded that the probability of exceeding an accepted 
hazard index threshold in a pumping well decreases with increased 
heterogeneity. The authors attributed their findings to the presence of 
low conductivity zones that can significantly increase the travel time 
between the source and the sink. 

Despite considerable progress, there exist significant gaps in our 
fundamental understanding of how aquifer heterogeneity can affect the 
probabilistic description of plume migration and contaminant detection 
(Gómez-Hernández et al. 2017). This study addresses some of these is
sues by investigating the case of a permanent, conservative contaminant 
leakage from a random source into a heterogenous aquifer stressed by a 
single supply well with a fixed pumping rate, resulting in a non-uniform 
flow field converging towards the well. This work was prompted by 
earthquake related damage to underground infrastructure upgradient of 
a well field and under such conditions the approximate location of a 
contaminant source is not always known. We investigate how the 
contaminant detection probability is affected by aquifer spatial hetero
geneity and dispersion characteristics by considering a hypothetical 
monitoring network of varied number of wells and sampling frequency. 
In this study the monitoring network follows the concept of “line of 

defense” presented by Bode et al. (2018), and is designed to detect 
contamination from unknown sources without source risk prioritiza
tions and to provide sufficient warning for mitigation measures to be 
implemented to ensure the safety of the water supply. This is achieved 
through a stochastic framework using a Monte Carlo approach. 

Model description 

Our study involves the simulation of flow and contaminant transport 
in an unconfined, heterogeneous, alluvial aquifer. The model used in 
this study is based on a simplified version of HAM3 (Gyopari 2014), a 3D 
regional flow model of the Waiwhetu Aquifer in New Zealand’s North 
Island. HAM3 has been rigorously calibrated and verified and has been 
used over the last 8 years for the sustainable management of the Wa
terloo borefield. Water taken from the borefield complements Welling
ton’s drinking water supply. 

The model domain is 3 km long in the mean direction of flow, 2 km 
wide, and is discretized by a uniform 5 m x 5 m finite difference grid 
(Fig. 1). Steady state flow is imposed by constant head boundaries 
(resulting in head gradient i = 4.67E-4 m/m) and uniform recharge 
across the model domain (r = 6.1E-4 m/d) (Gyopari 2014). A fully 
penetrating well extracts water (Q = − 10,000 m3/d) for a public supply 
network and is located 2 km downgradient in the flow direction. The 
model horizontal dimensions are considered much larger than the 
average aquifer thickness, and flow and transport conditions are 
assumed to be vertically uniform in the fully penetrating pumping and 
monitoring wells (Papapetridis and Paleologos 2011; Meyer et al. 1994). 

The aquifer heterogeneity is addressed through the hydraulic con
ductivity. Hydraulic conductivity distributions in alluvial aquifers are 
often assigned according to hydrofacies attributed to the depositional 
environment (Zhu et al. 2017) and represented by multi-indicator 
methods (de Barros et al. 2016; Fiori et al. 2013). Here, due to the 
small scale and low connectivity of the most permeable hydrofacies 
(Burbery et al. 2018), hydraulic conductivity (K(x)) is assumed to be a 
lognormally distributed (such that Y(x) = ln K(x) is a normal variate), 
stationary, second order and anisotropic process (Gelhar 1986; Paleo
logos et al. 2000; Paleologos and Sarris 2011), which has been shown to 
be a reasonable representation of aquifer heterogeneity for the predic
tion of observed plume propagation in similar environments (Sarris 
et al. 2018). The degree of aquifer heterogeneity is associated with the 
variance of Y(x), σ2

Y. The spatial continuity of the log transformed K(x) 
field is described by an anisotropic exponential covariance model CY, of 
integral scale λ, given by: 

CY(r) = σ2
Yexp

[

−

(
∑2

i=1

r2
i

λ2
i

)]1/2

(1)  

where ri is the separation distance between two arbitrary locations in the 
ith direction, while the correlation length λi is the length over which 
covariance decreases by a factor of e − 1 in direction i (Deutsch and 
Journel 1997). The exponential variogram correlation length in the 
mean flow direction (λ), statistical anisotropy (I=λ/λT) (where T denotes 
the transverse direction), and the log-K variance (σ2

Y) are used to 
parameterize the aquifer heterogeneity, while the log-K mean (μY) and 
effective porosity (neff) are considered as deterministic parameters and 
are adopted from Gyopari (2014), with μY = 6.86 and neff = 0.25. 
Table 1 summarizes the deterministic parameters used in the flow and 
transport modeling. 

To our knowledge, there have been no previous studies addressing 
solute or pathogen transport in the study area. As groundwater velocities 
in the study area are high, molecular diffusion becomes negligible 
compared to mechanical dispersion and the dispersion mechanism can 
be represented by the mechanical dispersion alone (Zheng and Wang 
1999). Contaminant dispersion is parameterized using the longitudinal 
dispersivity (α) and transverse dispersivity ratio (αT/α) based on nu
merical and experimental results from similar environments in New 
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Zealand (Sarris et al. 2018) and previously published results (Zech et al. 
2015). 

A source at a random location is assumed to release a conservative, 
fully soluble contaminant in the aquifer. In the study area there has been 
evidence of solute and pathogen contamination recently following the 
2016 Kaikoura earthquake (7.8 Mw), but to the authors’ knowledge 
there have been no studies quantifying these accidental discharges. 
Contaminants are assumed to be released at a constant rate resulting in 
an average source strength (C0). In most cases contaminants are ex
pected to undergo some form of geochemical or biological trans
formation, resulting in mass and concentration reductions (Renou et al. 
2008). These reductions are heavily dependent on the contaminant, but 
also on the aquifer’s physical, chemical, and biological environment. 
Such processes are not considered here, as the focus of our study is the 
impact of aquifer heterogeneity, monitoring locations, and sampling 
frequency on contaminant detection probabilities. The source is 

assumed steady state (Yenigül et al. 2013), which physically corre
sponds to a source that remains active (and potentially undetected or not 
remedied) for sufficient time for the plume to potentially reach the 
pumping well. Under these conditions the transport of contaminants in 
Fickian groundwater flow systems can be expressed as (Zheng and Wang 
1999; Sarris et al. 2018): 

∂(θC)
∂t = ∇⋅(θD⋅∇C) − ∇⋅(θviC) + qsCs (2)  

where D is the mechanical dispersion coefficient tensor, vi is the linear 
pore water velocity defined as qi/θ and relates the transport to the flow 
equation, and Cs is the concentration of the source fluxes qs. The com
ponents of the mechanical dispersion tensor in two dimensions are 
(Bear 1979; Bortone et al. 2019) 

Dxx = α v
2
x

|v|
+ αT

v2
y

|v|
, Dyy = α

v2
y

|v|
+ αT

v2
x

|v|
, Dxy = Dyx = (α − αT)

vxvy
|v|

(3)  

where |v| is the magnitude of the velocity vector. Flow and transport 
through the unsaturated zone is not considered in our study. Cases 
where ignoring the influence of the vadose zone to contaminant trans
port is appropriate, include those where the contamination source is 
near or below the water table, when the water table is shallow, or when 
transport through the vadose zone is relatively fast through non- 
stratified media and/or fingered flow conditions (Wang et al. 2018; 
Sarris, Scott, et al. 2019). 

Fig. 1. Schematic diagram of the 3 km x 2 km model domain.  

Table 1 
Deterministic hydraulic and geological parameters of the investigation 
area.  

Parameter Value 

Groundwater recharge 0.00061 m/d 
Regional hydraulic gradient 0.000467 m/m 
Pumping rate 10,000 m3/d 
Hydraulic Conductivity ln-mean 6.86 
Porosity 0.25  
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Monte Carlo scheme 

The flow and transport in the heterogeneous aquifer are studied in a 
stochastic framework, using a Monte Carlo approach, as follows: 

For each combination of a set of flow (λ, I and σY
2) and transport (α, αT/α) 

model parameters, two dimensional random hydraulic conductivity fields 
are generated using the Sequential Gaussian Simulation method (Deutsch 
and Journel 1997). Aquifer heterogeneity and dispersion parameter values 
considered in this study have been selected to represent a range of hetero
geneous environments (Gelhar 1986; Sarris and Paleologos 2004; Burbery 
et al. 2020; Fiori et al. 2013; Zech et al. 2015; de Barros et al. 2016) as 
summarized in Table 2. 

For each simulated field, a random contamination source location is 
selected across the study area. The numerical steady state flow solution 
is obtained using MODFLOW-NWT (Niswonger et al. 2011), while the 
transport problem is solved using MT3D-USGS (Bedekar et al. 2016). To 
reduce the computational burden and the prohibitive disk storage space 
requirements (due to the large number of realizations required for so
lution convergence), the transport solution is obtained for steady state 
transport conditions. To estimate the stochastic contaminant arrival 
times, advective transport travel times are obtained using MODPATH 
version 5 (Pollock 1994) by calculating the particle travel times from 
each grid cell to the sink or downgradient boundary. 

Detection statistics 

Once all the realizations have been undertaken, the point detection 
probability statistics are calculated at each grid cell. This involves the 
calculation of true positive (TP), true negative (TN), false positive (FP) 
and false negative (FN) probabilities. A positive/negative outcome re
fers to whether the contamination reaches the well, and true/false 
outcome refers to the detection of the contamination from the moni
toring well. True detection is when the outcome (positive or negative) is 
correctly identified in terms of grid cell concentration exceeding a pre
defined detection limit (Cthr)). In this study the threshold concentration 
at which detection occurs is Cthr = 10− 3C0 (Hudak 2001). For example, 
the TP detection rate (DTPN

i,j) from N total realizations at a single loca
tion (i,j) in the flow field is calculated according to: 

DTPNi,j =
1
Npos

∑N

n=1
TPni,j (4)  

where Npos is the number of positive events, and TPn
i,j denotes a TP 

detection at location (i,j) for realization n: 

TPni,j= {
1 if Cw > Cthr and Ci,j > Cthr

0 otherwise (5)  

In (5) Cw and Ci,j are the contaminant concentrations at the pumping 
well and monitoring location (i,j) respectively. 

For a monitoring network consisting of k sentinel wells, the detection 
rate (also known as sensitivity, or true positive rate in biostatistics) of 
the entire network (DTPk) is calculated as the size of the set of re
alizations where at least one of k wells has a TP detection, divided by the 
total number of positive events (Yerushalmy 1947): 

DTPk =
1
Npos

⃒
⃒
⃒∪kSTPi,j

⃒
⃒
⃒ (6)  

where STP
i,j is the set of realizations where a TP detection occurred at 

location (i,j): 

STPi,j =
{
n : TPni,j= 1

}
(7)  

The term ∪kSTP
i,j is the union of the sets for each of the k wells in the 

network, which gives the set of realizations where a TP detection 
occurred at any of the well locations, ignoring any duplicate cases where 
2 or more wells detect the contaminant plume in the same realization. 
The size of this set is the total number of TP detections for the network. 
Therefore, a crude effectiveness measure of a k-well monitoring network 
could be obtained by calculating the network detection rate (DTPk). 

A monitoring network should, however, also provide an early indi
cation of the imminent well contamination for remedial actions to be 
implemented (Bode et al. 2016), by ensuring that transport time be
tween first arrival at the monitoring network and arrival at the pumping 
well will be equal to or greater than a specified threshold, TR. For 
practical applications TR is associated with the sampling frequency and 
action implementation timeframes. An optimal monitoring network 
layout can be obtained by maximizing DTPk, such that all wells in the 
network satisfy the condition that the mean advective travel time T 
between the monitoring and pumping well is greater than TR. A moni
toring network should also minimize the risk of false positive detections, 
which can be significant for non-conservative and pathogenic contam
inations and can result in significant supply disruptions. 

Alternatively, the network effectiveness can be calculated with a risk 
correcting function (Papapetridis and Paleologos 2011) that considers:  

a) the contamination detection rate adjusted for potential false positive 
detections,  

b) detection timing relative to TR, and  
c) the travel time uncertainty (from the monitoring wells to the 

pumping well). 

We propose a weighted risk function as: 

f k, TRrisk =
1
k
(DTPk − DFPk)

∑

k
f TRi,j × f σi,j (8)  

where DFPk is the false positive detection rate of a k-well network 
(Pagano and Gauvreau 2018) given by: 

DFPk =
1
Nneg

⃒
⃒
⃒∪kSFPi,j

⃒
⃒
⃒ (9)  

SFP
i,j is the set of realizations where a FP detection occurred at location (i, 

j) (similar to (7)), and Nneg is the total number of negative events. In (8) 
the weighting term fTR

i,j accounts for the mean travel time T from a 
monitoring well located at (i,j) to the pumping well, and here is given by 
a sigmoid function (Ruppert et al. 2015; Sarris and Paleologos 2004) 
with midpoint TR and slope TR/2 that smoothly increases from 0 to 1 as 
T increases from 0 to 2TR: 

f TRi,j =
1
2

⎛

⎜
⎝1+ tanh

⎡

⎢
⎣
T − TR

TR
2

⎤

⎥
⎦

⎞

⎟
⎠ (10)  

This term greatly reduces the risk correcting function fk, TR
risk when travel 

time T from a monitoring well to the pumping well is less than the 
threshold TR, whereas the slope (which in (10) is set to TR/2) defines the 
distance from TR where fTR reaches its upper and lower limits. As a 
result, fTR aims to scale the effects of early and late detections, by pro

Table 2 
Stochastic model parameter values.  

Parameter Values 

λ (m): Correlation length 20, 50, 500 
I (-): Statistical anisotropy ratio 1, 5, 10 
σΥ

2 (-): Log-K variance 0.1, 1.0, 2.0 
α (m): Longitudinal dispersivity 0.62, 6.2, 62.0 
αT/α (-): Transverse dispersivity ratio 0.1, 1.0  
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moting early detection beyond a simple binary threshold of the form T 
> TR. The term fσi,j is weighting the uncertainty of the travel time esti
mates and here is given by: 

f σi,j =
1

1 + σTi,j
(11)  

where σT
i,j is the average travel time standard deviation at (i,j) expressed 

as a percentage of the average. fσi,j is close to 1 when travel time uncer
tainty is low and decreases towards 0 as the uncertainty increases. It 
follows from (9) through (11) that fk, TR

risk has a range [− 1,1], but for 
conservative contaminants within the well capture zone where DFP re
duces towards zero, its range reduces to [0,1]. As such, the quantity 
fk, TR
risk can be considered as the risk corrected detection probability of a 

random contamination source by a k-well monitoring network. For the 
purposes of this work, risk is quantified in terms of monitoring and 
remedial action delays and uncertainties. 

Results and discussion 

Number of realizations 

The number of realizations that are required for the Monte Carlo 
scheme solution to converge varies depending on the physical problem 

and the sources of uncertainty. In our study the scheme is considered to 
have converged when the TP and TN detection rates stabilize after a 
sufficient number of realizations (Lahkim and Garcia 1999; Yenigül 
et al. 2005). The term ΔDTPn

i,j is defined as the change of the TP rates 
across the numerical grid (denoted by the indices i and j) after n re
alizations according to: 

ΔDTPni,j = DTPni,j −
1

n − 1
∑n− 1

k=1
DTPki,j (12)  

The ΔDTPn
i,j standard deviation σn

TP for the nth realization can be calcu
lated across the numerical grid. In a similar manner ΔDTNn

i,j and σn
TN can 

be calculated for the TN detection rates. In our study the sum of σn
TP and 

σn
TN is used as the convergence criterion. Fig. 2a plots the scheme 

convergence with increasing number of Monte Carlo realizations for low 
dispersivity and heterogeneity, whereas Fig. 2b plots the scheme 
convergence for the case with high dispersivity and high heterogeneity. 
These figures indicate that the number of realizations to achieve 
convergence increases with increased heterogeneity and more disper
sive conditions (Paleologos et al. 2000), but convergence can be attained 
with 10,000 to 15,000 realizations for all cases. The latter number is 
chosen for our numerical experiments. 

Fig. 2. Convergence of mean true positive (TP) and true negative (TN) detection probability changes for increasing number of realizations for low (a) and high (b) 
dispersive and heterogeneity conditions. 
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Contaminant travel time and detection rate 

Based on the site heterogeneity conditions (Gyopari 2014; Donald
son and Campbell 1977) and similar environments in NZ (Sarris et al. 
2018; Burbery et al. 2020; Sarris, Close, et al. 2019) we considered λ =
50 m, I = 5, σΥ

2 = 1.0, α = 6.2 m, αT/α = 0.1 as base model parameters, 
using the ranges from Table 2 to assess their effects on contaminant 
detection rates. A base travel time threshold of TR = 100 days is also 
considered, to allow time for sampling the pumping well and some 
response time for mitigation (Papapetridis and Paleologos 2012). This 
could correspond to quarterly sentinel well sampling (approx. 90 days 
between sampling runs) with a 10-day response time, or 60-day sam
pling intervals and longer response time (40 days), and so on. 

The TP detection rate (Eq (4)) across the model domain for 4 
different dispersivity cases is shown in Fig. 3. As expected, TP is larger 
around the pumping well and directly downgradient. The latter is the 
effect of dispersive transport at or near the well capture zone boundary. 
Higher TP rates indicate that a single monitoring point at this location 
should provide increased positive detection probabilities, when the ef
fect of TR is not considered, such as for the zone downgradient of the 
pumping well where the contamination will be detected after the plume 
reached the pumping well. TP increases considerably with increasing 
dispersivity (particularly in the transverse direction), as the lateral 
plume spreading facilitates detection. There is some asymmetry in TP 
distribution across the domain for the highly dispersive flow conditions 
in Fig. 3d. This is considered to be an artifact of the finite number of 
realizations undertaken (Lahkim and Garcia 1999; Papapetridis and 
Paleologos 2011; Sarris, Close, et al. 2019), however, even when the TP 
distribution is obtained with a total of 25,000 realizations, for the case 
with highest dispersivities and heterogeneity some residual (albeit 
smaller) asymmetry is still observed (results not shown). 

Fig. 4 shows the average advective travel time from each grid cell to 
the pumping well and the relative travel time standard deviation, for 
different parameter values and increasing heterogeneity. White denotes 
the area where particles never reach the pumping well, while the 
colored area denotes the average capture zone. Note that these travel 
times were obtained using particle tracking considering advective 
transport alone, ignoring dispersive effects. When heterogeneity is low, 
the average travel time to the pumping well is Gaussian with little 
variability between realizations. With increasing heterogeneity, the 
capture zone size increases (Ayinippully Nalarajan et al. 2021) as does 
the variability between realizations, even though the range of the 
average travel times does not change, as shown in Figs. 4d-4f. Increasing 
statistical anisotropy has little effect on the spatial distribution of travel 
times and relative standard deviation σT (Figure S1). Increasing λ from 
20 m to 50 m and 500 m, increases the capture zone size by 23% and 
60% respectively (Figure S2), as the greater spatial continuity of the K 
field allows preferential transport to the pumping well from a larger part 
of the simulated aquifer (Cole and Silliman 1997). Increasing σΥ

2 also 
contributes to increased capture zone area and is the main contributor to 
the significant increase of σT (Figure S3) (Ayinippully Nalarajan et al. 
2021). 

The TP and FP detection rates, average advective travel time, and 
resulting frisk for a single monitoring location for the model base pa
rameters are shown in Fig. 5. Unsurprisingly, FP rate peaks down
gradient and to the sides of the pumping well, where monitoring is likely 
to detect up to 25% of contamination events that do not reach the supply 
well, and perhaps unnecessarily trigger remedial responses. frisk in Fig. 5 
has been calculated for TR = 100 d In the vicinity of the pumping well frisk 

reduces to almost zero, despite the high TP and low FP rates, as the 
average advective travel time T is below TR and any monitoring out
comes would not occur until after the water supply has been 

contaminated. Further from this zone, frisk increases sharply as T ap
proaches TR, before decreasing as the distance from the well increases 
and TP rate decreases. The area downgradient of the well with the 
highest frisk value (shown in red in Fig. 5d) is due to both the high TP rate 
(Fig. 5c) and the very low σT (shown earlier in Fig. 4e) on the border of 
the capture zone. However, the calculation of the travel time, which is 
computed as the travel time between each grid cell and the pumping 
well, does not consider the contaminant source location. In most cases 
contaminant arrival times to the pumping well are going to be lower 
than to the monitoring location immediately downgradient of the well. 
Hence, the constraint that the travel time is greater than TR alone, 
without considering simulated arrival times, is not a sufficient condition 
for early contamination detection in converging flows. For that reason, 
monitoring locations downgradient of the pumping well are not 
considered for monitoring network configurations. 

The effect of TR on frisk for a single observation point is shown in 
Fig. 6. As TR increases, the area surrounding the pumping well where 
frisk ≃ 0 also increases in size. Within this zone monitoring should not 
be expected to have a practical benefit. The maximum frisk upgradient of 
the well is approximately 0.32 for TR = 10 d, and decreases to 
approximately 0.25 and 0.15 for TR equal to 100 d and 200 d respec
tively. This suggests that earlier detection comes with significant 
reduction in the effectiveness of the monitoring scheme (Bode et al. 
2016). However, this does not address the performance of monitoring 
networks consisting of multiple sentinel wells which is discussed in the 
following section. 

Monitoring network optimization 

A monitoring network is optimized by finding the locations that 
maximize the risk correcting function (Eq (8)) for a prescribed network 
size (i.e. number of monitoring wells). Because of the highly non-linear 
nature of the optimization problem and the relatively small dimen
sionality of the phase space (Sarris and Burbery 2018), brute force 
optimization is applied where the possible location combinations are 
sampled in sequence. As discussed earlier, possible monitoring locations 
are restricted to those upgradient of the pumping well. To further reduce 
the computational burden, the domain of possible network locations is 
restricted by assuming that the solution needs to be symmetric about the 
X = 1 km plane, in accordance with the average flow field symmetry. 

It took approximately one hour of wall clock time to calculate an 
optimal 4-well network with 2 symmetric pairs of wells across a single 
model domain, using a single core of an Intel Xeon Gold 6150 server 
with 128 GB of memory and clock speed of 2.7 GHz (Sarris et al. 2021), 
whereas an optimal 5-well network took multiple days as the problem 
dimensionality greatly increases with each additional well. To reduce 
the computational burden, in this study network sizes ranging from 1 to 
4 wells are considered. 

Fig. 7 shows the effect of flow and transport parameters on the 
optimal array locations, while Fig. 8 summarizes the calculated detec
tion statistics for each network. Optimal performance with a single 
monitoring well is always achieved with the well at the side of the 
capture zone and not immediately upgradient of the pumping well. 
Detection rates depend on the size of the monitoring network and the 
parameter values, and range between 12% for a single monitoring 
location to 96% for four monitoring wells. For landfill monitoring, under 
uniform flow conditions and for instantaneous sources, Papapetridis and 
Paleologos (2012) reported detection probabilities ranging between 5% 
and 35% for up to six monitoring wells, while for similar flow settings 
Yenigül et al. (2005) estimated detection probabilities between 5% and 
80% for twelve monitoring wells, dropping to a maximum of 45% for six 
wells. Bode et al. (2016) reported that a network of 8 monitoring wells 
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Fig. 3. True positive (TP) detection rate for varied dispersivity. The rate is highest around the pumping well and directly downgradient and increases with dis
persivity (transverse dispersivity αT in particular). Field parameters are λ = 50 m, I = 5 and σΥ

2 = 1.0. 
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placed immediately downgradient of known risk sources can provide 
detection probabilities of up to 91%. There are several factors contrib
uting to the greater detection rates with smaller number of monitoring 
wells in this study. We only consider permanent sources in contrast to 
the instantaneous sources used in the aforementioned earlier studies, 
that make the resulting plumes harder to detect, unless a dense moni
toring network is created. For landfill monitoring and for permanent 
sources for example, Yenigül et al. (2013) reported that detection 
probabilities from a 3 well network can be up to 85% if the distance from 
the source is large enough. To our knowledge all previous studies 
consider monitoring downgradient of high-risk areas under uniform 
flow conditions, with the exception of Bode et al. (2016), that for nu
merical efficiency, simulated random sources in the well capture zone 
with an arc of point sources that cannot account for the dispersive 
characteristics of plumes, which would suggest a larger number of 
monitoring locations is needed. In all cases of our study, DFP is small and 
ranges between 0% and 8%. This is to be expected since only permanent 

contaminant sources are considered with monitoring within the well 
capture zone. Instantaneous and non-conservative sources would be 
expected to result in greater false positive detections, with the term DFP 
contributing more to frisk. 

Our numerical results suggest that increasing longitudinal and 
transverse dispersivities (Figs. 7a, 8a) result in large increases in frisk and 
TP detection rate. Under the most dispersive conditions a maximal 
detection rate (96%) is achieved with 4 wells, while a single well can 
correctly and timely identify 64% of all positive contamination events. 
For low α and αT (0.62 m and 0.062 m respectively), the detection rate 
from a single monitoring location is only 12%, whereas a 4 well network 
achieves a peak detection rate of 49%. For non-convergent flow, Yeni
gül et al. (2005) and Papapetridis and Paleologos (2011) reported 
increasing detection probability with increasing transverse dis
persivities, but they noted that after a threshold, and as the plume di
mensions increased, concentrations reduced below the detection limit, 
and the detection probabilities declined. However Yenigül et al. (2013), 

Fig. 4. a,b,c) average advective travel time to the pumping well, d,e,f) relative standard deviation in travel time for varied heterogeneity. The average travel time to 
the pumping well is more uniform when heterogeneity is low. The capture zone is larger when heterogeneity is high. White area. particles never reach the well. 
Dispersion parameters are α = 6.2 m, αT/α = 0.1. 
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Fig. 5. a) True positive (TP) detection rate, b) false positive (FP) detection rate, c) average travel time to the pumping well, and d) the risk function; λ = 50 m, I = 5, 
σΥ

2 = 1.0, α = 6.2 m, αT = 0.62 m and TR = 100 d White area. particles never reach the well. 

T.S. Sarris et al.                                                                                                                                                                                                                                 



Water Research 218 (2022) 118485

10

for uniform flow but permanent contamination source, concluded that 
detection probabilities continue increasing with increased dispersivities. 
In our study, due to the permanent source and the fact that flow and 
mass converge towards the pumping well, the detection rate increased 
even with relatively unrealistically high αT. More dispersive conditions 
also result in greater frisk values, while increased αT also results in 
increased DFP. For the least dispersive conditions, frisk peaks with 4 
sentinel wells, but for all other cases and in contrast to the detection rate, 
frisk peaks earlier with only 2 monitoring wells. This is because the 
marginal DTP increase of each additional well is negated by a marginal 
increase in false positive detections and increased travel time uncer
tainty (σΤ). 

Figs. 7b-d show the optimal networks for varying λ, σΥ
2 and I values. 

In all cases, increasing the number of monitoring wells results in 
increasing DTP and frisk (Figs. 8b-d). For each network size, the value of 
these parameters appears to have only a small effect on the network 
spatial arrangement. As shown earlier (Fig. 4), smaller λ and σΥ2 result in 
reduced advective travel time uncertainty and greater frisk. For 1 to 2 
monitoring wells, DTP decreases with increasing λ, as preferential flow 
and transport through better connected highly permeable parts of the 
aquifer is more pronounced. With increasing network sizes (3 or 4 wells 
in our study) these preferential pathways are better intercepted, and 
DTP stabilizes. Increasing σΥ2 results in increased DTP. This is in contrast 
to the results of Yenigül et al. (2005) and Papapetridis and Paleologos 
(2011) who concluded that, for non-convergent flows, detection prob
abilities decrease for increased heterogeneity (σΥ

2). The latter authors 
suggested that in highly heterogeneous aquifers, placing the wells closer 
to the known source was a necessary condition for detection to occur, 
suggesting that increasing σΥ

2 potentially resulted in more dispersed 
plumes with concentrations below the detection limit. However under 
converging flow conditions this is a lesser issue, resulting in better 
detection of the more dispersed plumes. 

The value of statistical anisotropy appears to have no effect on either 
DTP or frisk (Fig. 8d) and only a marginal effect on the spatial distribution 
of the monitoring wells (Fig. 7d). 

Fig. 7e shows the optimal networks with the travel time threshold TR 
varied from 10 to 200 days. A low TR value implies a much higher 

monitoring frequency which may increase operating costs depending on 
the methods used for contaminant sampling and/or measurement. As 
expected, increasing this threshold penalizes detections closer to the 
pumping well and decreases both DTP and frisk (Fig. 8e), while the 
optimal sentinel distance from the pumping well increases to allow for 
earlier detection (Bode et al. 2016). When TR = 10 days there is little 
benefit from installing more than two sentinel wells. In fact, the two 
wells can achieve a detection rate of 84%, and a third sentinel well only 
contributes an additional 1% to the estimated DTP, while its location is 
mostly driven by the relatively small travel time uncertainty, σT, 
resulting in marginally larger frisk. Increasing TR to 200 days reduces DTP 
to 24% and 70% (for 1 and 4 monitoring wells), compared to 46% and 
84% for 1 and 2 monitoring wells with TR = 10 days. 

Discussion and practical applications 

In this study a risk corrected decision analysis model is proposed to 
determine optimal groundwater monitoring networks for the protection 
of production wells. The general layout of our proposed network design 
stems from the “line of defense” concept proposed by Bode et al. (2016, 
2018), but consisting of significantly fewer wells, due to the proposed 
risk correcting function and the stochastic numerical approach to the 
random source problem that fully considers the plume dispersion. 

The focus of this study is to determine how the network detection 
rates are affected by aquifer heterogeneity and whether sufficient pro
tection can be achieved from such networks. As such, certain numerical 
“compromises” had to be made to limit the computational burden of this 
study which included 216 parameter combinations, with each one 
requiring 15,000 flow and transport simulations. As a result, we opted to 
ignore seasonal variations in boundary conditions, transient transport, 
and multiple retarded or degrading contaminants, and represent a 3D 
aquifer and transport problem with a 2D numerical approximation. Even 
though there can be compelling cases made for all of these assumptions, 
it would be expected that in a practical application these may be 
considered in a more site-specific manner. For example, multiple con
taminants based on the catchment land-uses and hydro-geochemisty can 
be considered, where Cthr values can be contaminant specific. 

Fig. 6. The effect of travel time threshold (TR) on frisk; λ = 50 m, I = 5, σΥ
2 = 1.0, α = 6.2 m and αT = 0.62 m.  
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Fig. 7. Optimal monitoring networks of size 1 – 4 wells for varied aquifer parameters. The optimal networks are found by maximizing the risk correcting function 
(frisk). a) dispersivity (in meters), b) correlation length (in meters) c) variance, d) anisotropy, e) travel time threshold (in days). DTP. TP detection rate of the network. 
Default parameter values are used unless otherwise specified. 
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Fig. 8. TP detection probability (DTP) and risk correcting function (frisk) for the optimal monitoring networks shown in the previous figure, found by maximizing frisk 
for networks of size 1 – 4 wells and varied parameters. a) dispersivity, b) correlation length, c) variance, d) anisotropy, e) travel time threshold. 
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Conclusions 

In this numerical study, Monte Carlo stochastic analysis is used to 
simulate groundwater flow and contaminant transport in a heteroge
neous two-dimensional aquifer. The flow field is strongly affected by a 
pumping well used as a drinking water supply. Pollution originates from 
a steady-state source at a random location. We consider how heteroge
neity and dispersion parameters affect the timely and accurate detection 
of contamination events of monitoring networks consisting of 1 to 4 
monitoring wells. Network performance is measured as a risk correcting 
function considering the network’s true and false positive detections, 
sampling frequency in terms of early detection, and the associated un
certainty. The following major conclusions can be drawn from our study:  

1 Convergence of the point detection rates was not always achieved 
after 15,000 realizations. The true positive and true negative 
detection probability standard deviations were used across the field 
as a convergence criterion and established that 10,000 - 15,000 re
alizations should suffice for probabilistic solutions to stabilize. 
However, for highly heterogeneous and highly dispersive transport 
conditions, spatially distributed average values of true positive 
detection probabilities and advective travel time standard deviations 
remained nonsymmetrical even after as many as 25,000 realizations.  

2 Our results indicate that in all cases of aquifer heterogeneity and 
dispersion, increasing the number of wells used for monitoring 
purposes resulted in greater detection rate of contamination events. 
For the base parameters of our study and from a single monitoring 
well it is expected that at least 32% of all contamination events that 
reach the water supply well would be correctly and timely identified, 
increasing to 80% for a network consisting of four wells. For 
computational reasons, our analysis was limited to a maximum of 4 
monitoring wells, but detection rates of the order of 75% were 
achieved frequently with only 3 monitoring wells.  

3 Aquifer dispersivity is the dominant parameter for the quantification 
of network performance. For fixed heterogeneity (λ, σΥ

2 and I) and 
number of wells, detection rate increases with increased longitudinal 
and transverse dispersivities. Our numerical results suggest that, in 
contrast to previously published results for non-convergent flows and 
instantaneous sources, further increasing dispersion parameters does 
not result in detection rate reduction. Under the least dispersive 
conditions in our study, the detection rate is 12% and 49% for 1 and 
4 monitoring wells respectively, increasing to 64% and 96% for the 
largest dispersivity values considered.  

4 For fixed dispersion parameters, increasing spatial continuity of the 
Gaussian conductivity field resulted in decreased detection rate 
when up to two wells were considered, due to preferential flow and 
transport. Increasing the number of monitoring wells resulted in no 
obvious differences between DTP achieved for the three considered λ 
values, suggesting that these preferential pathways are adequately 
captured by the network. 

5 Increasing σΥ
2 resulted in greater detection rates for networks con

sisting of up to 3 wells. Once a fourth well was added to the network, 
σΥ

2 did not affect the DTP. Statistical anisotropy did not appear to 
have a noticeable effect on the network detection rate.  

6 Earlier detection for remedial action comes with a significant cost in 
terms of detection rate. Increasing TR from 100 to 200 days results in 
17%, 21% and 10% lower detection rates for 2, 3 and 4 monitoring 
wells respectively. False positive rates are also expected to increase 
from 1% to 4% for networks of 3 and 4 wells respectively. 

Future work will expand the scope of this study to address microbial 
risk and non-conservative organic pollutants, under unsteady flow and 
transport conditions. 
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