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Abstract 

In 2015 the Scientific Working Group on DNA Analysis Methods published the SWGDAM 

Guidelines for the Validation of Probabilistic Genotyping Systems [1].  STRmix™ is 

probabilistic genotyping software that employs a continuous model of DNA profile 

interpretation.  This paper describes the developmental validation activities of STRmix™ 

following the SWGDAM guidelines.  It addresses the underlying scientific principles, and the 

performance of the models with respect to sensitivity, specificity and precision and results of 

interpretation of casework type samples.  This work demonstrates that STRmix™ is suitable 

for its intended use for the interpretation of single source and mixed DNA profiles.   
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Introduction 

The dominant method for forensic DNA analysis involves the amplification of short tandem 

repeats using PCR.  Amplified products are separated via capillary electrophoresis (CE).  

Fluorescently labelled tags are used to colour code the markers or loci.  A laser excites the 

primer tags as the different lengths of DNA travel through the capillaries of the electrophoresis 

instrument, which emit a signal that is recorded.  The signals are visualised as peaks in a graph 

of fluorescence versus time, known as an electropherogram (epg).  The height of the peaks is 

approximately proportional to the initial amount of DNA template and is measured in relative 

fluorescent units (rfu).  In this way height can be used as an approximation of DNA quantity 

or template.   

Manual techniques for DNA profile interpretation are heuristically based and may be difficult 

to apply consistently between laboratories, individual scientists and even a single scientist.  

Variable decisions often occur early in the manual interpretation process and can even occur at 

allele assignment.  Divergence in these choices can have significant downstream consequences 

[2, 3].  Phenomena such as stutter (artifactual amplicons produced as a consequence of the PCR 

process), allelic drop-in (the presence of low amounts of extraneous DNA) and dropout (which 

is a consequence of low template and/or degraded DNA and results in partial DNA profiles) 

[4] are all considered at profile analysis and interpretation.  Interpretation of DNA profiles is 

also complicated by mixed samples (the presence of DNA from more than one individual). 
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The interpretation of an epg or evidentiary DNA profile should initially be undertaken ‘blind’; 

in isolation of the person of interest’s (POI) reference DNA profile, and where possible 

avoiding contextual effects [5, 6].  Comparison with reference profiles of any POI or other 

relevant evidentiary profiles is undertaken after profile interpretation.  Traditionally there are 

three primary conclusions that can be drawn: cannot exclude (or inclusion), can exclude, or 

inconclusive which is sometimes also called uninterpretable [7].  It is desirable when an 

association is reported (cannot exclude or inclusion) to present the evidence with the associated 

statistical weight [7].  When the evidence profile originates from a single individual, the weight 

of evidence can be presented as a match probability.  This is an assignment of the probability 

that a random person might match the crime scene stain given the observation of that crime 

stain profile.  A favoured alternative to the match probability, which can be extended to use for 

mixed DNA profiles, is the likelihood ratio (LR). The LR considers the probability of obtaining 

the evidence profile(s) given two competing propositions, usually aligned with the prosecution 

case and defence case. The LR is used throughout Australasia and the UK and is used in some 

laboratories within the US and Europe for criminal forensic work to express the weight of 

evidence.  The LR is accepted to be the most relevant and powerful statistic to calculate the 

weight of the evidence and is the only method recommended by the International Society for 

Forensic Genetics (ISFG) for ambiguous profiles [8].  Ambiguous profiles include all mixtures 

and single source profiles where dropout and drop-in are a consideration.   

Known shortcomings of traditional methods of DNA profile interpretation have led to the 

development of improved models that factor in the probability of dropout [9-13].  The drop 

model (also known as the semi-continuous method) can optionally incorporate a probability 

for dropout, Pr(D), and/or a probability for drop-in, Pr(C).  Semi-continuous methods do not 

use peak heights when generating possible genotype sets and do not model artifacts such as 

stutter.  Continuous methods make assumptions about the underlying behaviour of peak heights 

across all profiles to evaluate the probability of a set of peak heights in a given profile.  These 

methods are designed to be used in expert systems and reduce the requirement for the manual 

assignment of peaks as allelic within evidence profiles, and hence reduce the opportunity for 

inconsistency in interpretation to occur.  The calculations are sufficiently complex that software 

is needed.  STRmix™ is one such continuous method that employs a fully continuous approach 

for DNA profile interpretation (http://strmix.esr.cri.nz/ [14]).   

In 2015 the Scientific Working Group on DNA Analysis Methods published the SWGDAM 

Guidelines for the Validation of Probabilistic Genotyping Systems [1].  The developmental 

validation of a probabilistic genotyping system has been described by SWGDAM as “the 

acquisition of test data to verify the functionality of the system, the accuracy of statistical 

calculations and other results, the appropriateness of analytical and statistical parameters, and 

the determination of limitations” [1].  

The developmental validation of STRmix™ was initially undertaken in 2012 following the 

requirements outlined within the FBI Quality Assurance Standards [15] by analysts at Forensic 

Science South Australia (FSSA) and the Institute of Environmental Science and Research 

Limited (ESR; http://www.esr.cri.nz/).  FSSA is the South Australian State Forensic Science 

Laboratory and is accredited by the National Association of Testing Authorities, Australia.  

ESR is the New Zealand Government Crown Research Institute that undertakes forensic 

services for the NZ Police.  ESR forensic DNA laboratories are accredited by the Laboratory 

Accreditation Board of the American Society of Crime Laboratory Directors (ASCLD/LAB) 

under the International Testing Program (ISO 17025).   

Within this paper we describe the developmental validation activities undertaken for 

STRmix™ following the SWGDAM recommendations [1].  Each of the guidelines is discussed 

in turn under their recommendation number. 

http://www.esr.cri.nz/
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Guideline 3.1 Publication of underlying scientific principles 

All significant portions of the statistical algorithms and underlying scientific principles behind 

STRmix™ have been published in peer reviewed scientific literature.  Within Table 1 we 

provide a summary of these models and algorithms and their references aligned with the 

software version in which they were introduced.  

STRmix™ uses the quantitative information from an electropherogram (epg) such as peak 

heights (O), to calculate the probability of the profile given all possible genotype combinations 

(Sj).  A value, or weight (wi), is assigned to the normalised probability density p(O|Sj).  

STRmix™ assigns a relative weight to the probability of the epg given each possible genotype 

combination at a locus.  The weights across all combinations at that locus are normalised so 

that they sum to one.  Therefore, a single unambiguous genotype combination at any locus 

would be assigned a weight of one.   

STRmix™ describes the fluorescence observed in one or more epgs using a number of models 

that describe various properties of DNA profile behaviour.  These are described as mass 

parameters and include a template for each contributor, a locus specific amplification efficiency 

for each locus, a replication efficiency for each PCR replicate, and a degradation for each 

contributor.  This biological model is described in Bright et al. [16].  Profile degradation is 

modelled as exponential [17, 18].  Drop-in is optionally modelled as a gamma distribution 

following Puch-Solis [19].  In addition, STRmix™ employs a per allele stutter model, the 

parameters of which are based on empirical data [16, 20, 21]. 

Posterior distributions of mass parameters are sampled from using Markov chain Monte Carlo 

(MCMC).  In general, MCMC is a numerical method used, in this case, to approximate an 

integral (typically multi-dimensional) of the observed data across all parameters.  MCMC 

methods sample from the posterior distribution of the desired integral.  It does so by using 

Markov chains that have the posterior distribution as their equilibrium distribution.  These 

chains ‘walk’ around in a memoryless fashion using an acceptance-rejection criterion to 

determine whether to take a step or not.  At each step that the chain accepts the integrand value, 

it is counted towards the integral.  At each step that the chain rejects the integrand value at that 

proposed point, the current point is counted towards the integral. The rejection-acceptance rule 

used within STRmix™ is called the Metropolis-Hastings algorithm [22, 23].  The chain will 

then propose new steps in its search for a state that provides a reasonably high contribution to 

the integral until it finds a state which it will accept and move to.  The statistical algorithms 

within STRmix™ are described in Taylor et al. [14].   

STRmix™ does not use the reference profiles during profile deconvolution unless a reference 

from a known contributor is available (for example the complainant’s DNA on their intimate 

samples collected as part of an investigation into a sexual assault).  Where a reference profile 

is available from a person of interest (POI) a likelihood ratio may be calculated.  It is the ratio 

of the probability of the observed crime stain (O) given each of two competing hypotheses, Hp 

and Hd, and given all the available information, I.  Mathematically, we express this as: 

Pr( | , )

Pr( | , )

p

d

O H I
LR

O H I
=  

The likelihood ratio is calculated in STRmix™ incorporating values for FST (theta) using the 

subpopulation model of Balding and Nichols in 1994 [24], referred to as recommendation 4.2 

in the 1996 National Research Council report (NRCII) [25].  As a continuous extension to the 

classic incorportation of a theta value (which is typically a fixed value) STRmix™ can consider 

a distribution for theta.  Propositions within STRmix™ are flexible.  The defence proposition 

aligns with exclusion of the person of interest and typically considers an unknown, unrelated 
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individual within a selected population.  Where appropriate, alternate propositions are 

calculated under the defence propositions such as a sibling, parent, child or cousin of the person 

of interest [26].  Additionally STRmix™ can provide an LR based on the unifying theory. This 

is where rather than specifying either an unrelated individual or a nominated relative (sibling, 

parent etc.) under the defence propositon, all members of the population, including possible 

relatives of the POI can be considered by taking into account their prior probabilities based on 

population properties.   

If one or more contributors is known to be present (i.e. conceded by both parties) then this 

information can be provided to STRmix™ at the deconvolution stage in order to assist in the 

deconvolution of the remaining questioned contributors. This assumption of a known 

contributor is then carried forward to the LR calculation.  If a reference profile is not available 

from a person of interest, the profile may be compared directly with a database of known 

individuals [28] to identify investigative leads. 

STRmix™ uses the highest posterior density (HPD) method for calculating an LR distribution, 

from which a quantile can then be chosen in order to report a bound of the probability density 

distribution [29, 30].  Within STRmix™ versions 2.3 onwards, the variability due to MCMC, 

the sampling variation inherent in generating allele frequency databases and the variability in 

FST (theta) can be estimated.  
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Table 1: A summary of the scientific principles, the STRmix™ version in which they were introduced and their publications  

Algorithms, scientific principles and methods Version introduced Reference 

Allele and stutter peak height variability as separate constants within the MCMC V2.0 [14][14] 

Peak height variability as random variables within the MCMC V2.3 [31] 

Model for calibrating laboratory peak height variability  V2.0 [31] 

Application of a Gaussian random walk to the MCMC process V2.3 Described within this paper 

Modelling of back stutter by regressing stutter ratio against allelic designation V2.0 [16, 20, 32, 33] 

Modelling of back stutter by regressing stutter ratio against LUS  V2.3 [16, 20, 21, 33] 

Modelling of forward stutter V2.4 [34] 

Modelling of allelic drop-in using a simple exponential or uniform distribution V2.0 [14][14] 

Modelling of allelic drop-in using a Gamma distribution V2.3 [19] 

Modelling of degradation and dropout V2.0 [17]  

Modelling of the uncertainties in the allele frequencies using the HPD V2.0 [30]  

Modelling of the uncertainties in the MCMC  V2.3 [29, 30, 35] 

Database searching of mixed DNA profiles V2.0 [28]  

Familial searching of mixed DNA profiles V2.3 [26] 

Relatives as alternate contributors under the defence proposition V2.3 [26] 

Modelling expected stutter peak heights in saturated data V2.3 [34] 

Taking into account the ‘factor of two’ in LR calculations V2.3 [36] 

Model for incorporating prior beliefs in mixture proportions V2.3 [37] 
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Guideline 3.2 Sensitivity and specificity studies 

With respect to interpretation methods, sensitivity is defined as the ability of the software to 

reliably resolve the DNA profile of known contributors within a mixed DNA profile for a range 

of starting DNA template.  The log(LR) for known contributors (Hp true) should be high and 

should trend to 0 as less information is present within the profile.  Information includes the 

amount of DNA from the contributor of interest, conditioning profiles (for example the victim’s 

profile on intimate samples), PCR replicates and decreasing numbers of contributors.  

Specificity is defined as ability of the software to reliably exclude known non contributors (Hd 

true) within a mixed DNA profile for a range of starting DNA template.  The LR should trend 

upwards to neutral as less information is present within the profile.  This is shown 

diagrammatically in Figure 1.   

Figure 1: A diagram showing the desired performance of a method of mixture interpretation. 

 

Specificity and sensitivity within STRmix™ were tested by calculating the LR for a number of 

GlobalFiler™ mixtures for both known contributors and known non-contributors [38].  Two, 

three and four contributor mixtures were constructed in varying proportions and amplified with 

varying amounts of template DNA as described in Table 2.   
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Table 2: A summary of the experimental set up 

Sample 
Mixture proportions for contributor Total DNA added to 

PCR (pg) One Two Three Four 

1-3 0.50 0.50 - - 

400,200,50 

4-6 0.33 0.67 - - 

7-9 0.20 0.80 - - 

10-11 0.17 0.83 - - 

13-15 0.09 0.91 - - 

16-18 0.33 0.33 0.33 - 

19-21 0.50 0.33 0.17 - 

22-26 0.25 0.25 0.25 0.25 
400,200,50,20,10 

27-31 0.40 0.30 0.20 0.10 

 

Each sample was amplified in triplicate giving a total of 93 samples.  Profiles were interpreted 

using STRmix™ v1.08 and LRs calculated for the known contributors and 186 non 

contributors.  The propositions considered were: 

Hp: The DNA originated from the person of interest and N-1 unknown contributors  

Hd: The DNA originated from N unknown individuals 

Where N was the number of contributors within the profile.  

The plots of log10(LR) versus DNA in the PCR (pg) produced for these comparisons are 

reproduced in Figures 2 through 6. The LRs produced from comparisons to known contributors 

(sensitivity tests) are signified by a blue point and those produced from comparisons to known 

non-contributors (specificity tests) are signified by a red point. A minimum value for log10(LR) 

of -30 was used, and any LRs obtained that fell below this were given the value of -30. The 

lines on figures are given only as a visual indication of trends in the scattered results. The 

polygons seen give a visual indication of the spread of the LRs.  

The plots in Figures 2 through 61 clearly demonstrate the sensitivity of STRmix™ for these 

mixtures by inspection of the spread of blue points.  They show the range of expected LR values 

for contributors given the amount of input DNA (guideline 3.2.1.2).  Type I errors (incorrect 

rejection of a true hypothesis) are clearly identified as blue points below the horizontal line of 

log10(LR) = 0.  As expected, this is dependent on the amount of DNA per contributor and the 

number of contributors to a profile (guideline 3.2.1.1).   

The plots also demonstrate the specificity of STRmix™ by inspection of the red points.  The 

per contributor amount for Hd true contributors was taken as the average of the known 

contributors (guideline 3.2.2.2).  Type II errors (failure to reject a false hypothesis) are clearly 

identified as reds points above the horizontal line of log10(LR) = 0.  As for sensitivity tests, this 

depends on the amount of DNA within the profile and number of contributors (guideline 

3.2.2.1). A series of much larger simulations (over 100 million LRs in total) exploring the 

specificity of STRmix™ and comparing it to theoretical expectations was carried out in [39]. 

This work found close alignment with expected and observed specificity from STRmix™ 

results.  

 
1 Reprinted from Forensic Science International: Genetics, Volume 11, Duncan Taylor, Using continuous DNA 
interpretation methods to revisit likelihood ratio behaviour. Forensic Science International: Genetics, Pages 
144-53, Copyright 2014, with permission from Elsevier.  
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The LR distributions for Hp true and Hd true are very well separated at high template for two 

contributor mixtures.  As the number of contributors increased and the template lowered the 

two distributions converged on log10(LR) = 0.  At high template STRmix™ correctly and 

reliably gave a high LR for true contributors and a low LR for false contributors.  At low 

template or high contributor number STRmix™ correctly and reliably reported that the analysis 

of the sample tends towards uninformative or inconclusive.   

There are some arguments [1-3] that a single point estimate of the LR as given in Figures 2 

through 6 is actually the best and most theoretically sound estimate to give if the goal was an 

even handed and probabilistic treatment of uncertainty.  In DNA profile interpretation we 

typically deliberately give an underestimate.  In our own casework we predicate this with the 

words “at least” by which we mean that the number reported is either below or very near the 

bottom of the plausible range.  Our experience suggests that this is done because of the desire 

by the courts and forensic scientists to avoid overstating the evidence.  Over time the avoidance 

of overstatement has changed into what is probably a very considerable and deliberate 

understatement.  This has been facilitated, we believe, because DNA can afford this 

understatement given the magnitude of our likelihood ratios.   

Sensitivity and specificity studies however have a scientific component to them and it may be 

desirable to use the best estimate available for these.  If these studies are used to formulate 

decisions such as assigning terms to a verbal scale then it should be noted that they refer to the 

point estimate and not the lower bound.  This has an additional and possibly undesirable 

consequence that if the verbal scale is calibrated from the sensitivity and specificity plots and 

then this scale is applied to the lower bound, the scale itself now possesses an element of 

conservativeness.   
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Figure 2: LRs produced for two person mixtures  Figure 3: LRs produced for three person mixtures 

  

Figure 4: LRs produced for four person mixtures Figure 5: LRs produced for four person mixtures using three replicate amplifications 
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Figure 6: LRs produced for four person mixtures using three replicate amplifications and assuming three out of the four known contributors in each analysis 
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There is no specific SWGDAM guideline regarding error rate but it is one of the Daubert 

standards regarding the admissibility of expert evidence in the US [40], with acknowledgement 

that these guiding factors are neither exclusionary nor mandatory [41].  With respect to forensic 

DNA evidence, the concept of error rates and false inclusions2 are similar and often confused.  

False inclusions would come under the specificity guideline of SWGDAM (guideline 3.2).   

Our preferred procedure when using STRmix™ is that the analyst assesses whether a person 

of interest is excluded prior to either their assessment of the results of software calculations or 

interpretation of the profile using the software at all.  Following this procedure, STRmix™ is 

being continually checked against human expectations and hence is being continually 

validated.  

The number of LRs >1 is largely determined by the sample.  Factors include the number of 

contributors and template.  Considerable research has been undertaken that allows informed 

statements to be made about the false inclusion rate for any given sample [14, 28, 38, 42].   

The LR is an assessment of the weight of evidence.  It is developed by considering two 

propositions: one aligned with the prosecution and an alternative.  LRs >1 support the 

prosecution proposition and those lower than one support the alternative.   

To highlight the matter, consider that we make up a DNA mixture and hence we know the 

donors.  Consider that this mixture is made from Smith and Brown.  If we test the proposition 

that it contains Smith we expect a high LR.  Suppose the LR is a billion.  Is this correct?  It is 

larger than one and as such that part is correct, but is a billion too large or too small or just 

right?  The problem is that we do not have the ‘true answer’ and this cannot be obtained by any 

method.   

False exclusions or false inclusions need to be interpreted in an LR framework.  A false 

exclusion most nearly corresponds with an LR markedly less than one when Hp is true.  A false 

inclusion most nearly corresponds with an LR markedly greater than one when Hd is true.  LRs 

near one are best described as uninformative and this may be the correct indication of the value 

of the profile even for comparisons with true or false donors if the information present in the 

profile is limited. 

When we consider a possible error rate for STRmix™ this must be balanced against the error 

rate for the entire DNA analysis process which can cause false inclusions and exclusions 

independent of the program.  A false inclusion occurs when: 

•  A non-donor has the correct alleles by chance, in total or in large part, to explain the 

mixture.   

It is very improbable that operator error (such as the inclusion of artifacts) or false information 

about a known contributor would cause a false inclusion.   

The rate of false inclusion is increased in situations where the true DNA donor is a close relative 

of the POI3.  Higher order mixtures, say four contributors, increase the chance of false 

inclusions.  Depending on the type of profile and proportion of DNA corresponding to the POI, 

replication and the correct use of known contributors can reduce the chance of false inclusions 

 
2 Note that the terms ‘false inclusion’ and ‘false exclusion’, whilst commonly used, imply an error has occurred, 

when in reality the probability has been assigned as expected in accordance with theory. A better term would be 

‘support for a false proposition’; however we retain the terms ‘false inclusion/exclusion’ for general 

understanding. 
3 Exploratory experimental work (ongoing) undertaken in conjunction with USACIL and the FBI suggests that 

STRmix™ can handle most of these situations. 
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(refer Figures 5 and 6).  In addition, more loci used in the analysis will reduce the chance of 

false inclusion.   

A false exclusion occurs when: 

• The PCR reaction runs sufficiently poorly that the peak or stutter heights give 

misleading information, or 

• A non-contributor is assumed to be present, or 

• There is an operator error, notably inclusion of an artifact in the peak information used 

by STRmix™ at interpretation.  An artifactual peak that has been retained within the 

input file will become part of the information used by STRmix™ to build genotype 

combinations. This will result in genotype combinations containing the artefact which 

will not align with the “true” genotypes of contributors to the profile.  If the POI aligns 

with one of these altered (false) genotypes, this might result in a false exclusion. 

There are a number of factors within STRmix™ under the control of the operator or the 

laboratory that affect errors. Most significantly are the two variance terms.  If these are set too 

low they increase false exclusions.  Set too high they increase false inclusions.  These variances 

are set during a laboratory’s internal validation by modelling the observed variation in allelic 

and stutter peak heights within a set of single source profiles of varying quality [31].  There are 

a number of diagnostics output by STRmix™ that allow a human check of the results including 

the genotypic weights (p(O|Sj)), the posterior mean of the variance terms and summary 

statistics of the MCMC (discussed later). 

False inclusions and false exclusions may occur as a result of a combination of specific 

software, multiplex and operator factors.  These are measurable.  The most significant factors 

affecting them are the number of contributors, the number of known contributors, template 

levels, and the multiplex used.  These factors are wrapped up in the LR in a way that the chance 

of producing an LR equal to or larger than the one in any particular case (LRcase) is less than 

1/LRcase. This relationship has been tested in trials of over 120 million cases of simulated false 

contributors and has always held [39].   

The fraction of false donors exceeding LRcase has been termed the p-value [43-45] and it has 

been convincingly argued that they do not replace the LR [46].  Nor is the p-value a direct 

measure of the false inclusion rate since an LR for a false donor less than LRcase but still much 

larger than one would be considered a false inclusion. 

We have no realistic way of measuring the false exclusion rate except to say that we have no 

undiagnosed instances of false exclusion.   

The pink data within Figures 2 through 6 are the log10(LR) values for non-donors.  Any red 

data points above the line support Hp and may therefore be considered false inclusions.  These 

data, which are towards the low template end, are slightly above the log10(LR) = 0 line, and are 

usually likelihood ratios between 1 and 1,000 (log10(LR) 0 to 3).  We term these low grade false 

inclusions since the LRs are low and near neutrality or only slightly to the inclusionary side.  

They occur when the false donor has the correct alleles for inclusion and hence they are a 

property of DNA rather than a consequence of the software not performing.  There are no 

modelling improvements that could ever be made which will eliminate all LRs that falsely 

favour inclusion. This is because the phenomenon causing these results is not a modelling 

phenomenon, but is due to the available biological data.  With any interpretation method there 

is a modelling component (including probability of dropout and drop-in) that will affect the 

magnitude of the LR, and this could mean the difference between a false inclusion and correct 

exclusion for a particular non-donor.  
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Uncertainty in the number of contributors 

The determination of the effect of incorrectly assigning the number of contributors to a profile 

on the interpretation is not explicitly a requirement of developmental validation within the 

SWGDAM guidelines however this is something the STRmix™ development team has 

explored.  The true number of contributors to a profile is always unknown.  Analysts are likely 

to add contributors in the presence of an artifact, high stutter, or forward stutter peak.  The 

assumption of one fewer contributor than that actually present may be made when contributors 

are at very low levels, are affected by peak masking and are dropping out (or visible below the 

analytical threshold), and in profiles where DNA is from individuals with similar profiles at 

the same concentrations.   

The effect of the uncertainty in the number of contributors within STRmix™ has previously 

been reported for a number of profiles with N and N+1 assumed contributors, where N is the 

known number of contributors [28, 42].  The inclusion of an additional contributor beyond that 

present in the profile had the effect of lowering the LR for trace contributors within the profile.  

STRmix™ adds the additional (unseen) profile at trace levels which interacts with any known 

trace contribution, diffusing the genotype weights and lowering the LR.  There was no 

significant effect on the LR of the major or minor contributor within the profiles.   

Separately, the effect of underestimating the number of contributors to a profile (N versus N-

1) has been investigated.  Assigning the number of contributors as N-1 (where N is the known 

number of contributors) may result in an exclusionary LR for a known contributor.  This occurs 

as STRmix™ is more likely to favour an incorrect genotype as it had to account for profiling 

information that does not explain the data accurately.   

Guideline 3.2.3. Precision  

STRmix™ assigns a relative weight to the probability of the epg given each possible genotype 

combination at a locus.  These weights are determined by Markov chain Monte Carlo (MCMC) 

methods.  The results of no two analyses will be completely the same using a stochastic system 

like MCMC.  This is a phenomenon that is relatively new to forensic DNA interpretation, which 

up until this point has always had the luxury of, at least theoretically, completely reproducible 

interpretation results.  The reproducibility of LRs calculated using STRmix™ has previously 

been explored by Bright et al. [35, 48]. 

The main cause of high variability within STRmix™ is non-convergence with the MCMC.  

Strictly, Markov chains do not converge.  They explore the sampling space forever until they 

are told to stop.  What we mean when we say Markov chains have reached convergence is that 

all chains are sampling from, and remain in, the ‘same’ high probability space.  

Non-convergence is caused by the MCMC chains not being run for a sufficient number of 

accepts.  The MCMC process starts with a number of iterations termed the ‘burn-in’.  Accepted 

genotypes from the burn-in process are not counted as they are likely to start at a low 

probability location.  At the completion of burn-in the MCMC progresses to post burn-in.  

STRmix™ is set to run for a user defined number of burn-in and post burn-in accepts.  

STRmix™ uses accepts as a method of controlling how long the MCMC runs rather than total 

iterations.  The reason for this is that by ensuring a defined number of accepts is obtained there 

is some degree of automatic scaling, whereby more complicated problems (with lower 
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acceptance rates) will automatically run for more iterations, without the need for user 

intervention. 

Non-convergence can be diagnosed using the Gelman-Rubin statistic [49, 50].  A high Gelman-

Rubin statistic in conjunction with other diagnostics may be an indication of non-convergence.  

The solution to non-convergence is to run the problem for longer, i.e. for more MCMC accepts.  

We typically multiply the number of burn-in and post burn-in accepts by 10.   

Putting aside non-convergence, there will always exist a level of MCMC run to run variability. 

This is simply due to the fact that the analysis is based on random number generation to 

function, which as the name suggests, is random.  Ideally this variability in some output value 

is small in comparison to the size of the value itself and hence its impact on interpretation is 

minimal, and in some instances can be taken into account. Variation in LRs produced from 

STRmix™ analyses will depend on both the sample and the run parameters.  Sample specific 

factors that affect precision include: 

1. Number of contributors to a DNA profile 

2. Quality/intensity of the DNA profile 

3. Number of replicates available for analysis 

4. The probability of the observed data given the genotype of the POI as a contributor 

(commonly referred to as the ‘fit’ of the POI) 

5. The amount of STR information available in the profile. 

STRmix™ run specific parameters that affect precision include 

1. Number of iterations the MCMC has run 

2. The number of Markov chains used 

3. The step size of the Markov chain (termed the random walk standard deviation, 

RWSD). 

The RWSD is a metaparameter that describes the standard deviation of the normal distributions 

from which the step size for each continuous parameter is drawn. We describe this 

metaparameter in more detail below.  The effect of these run specific parameters on the 

variability of the LR is discussed in detail below. 

Number of MCMC chains and accepts  

Increasing the number of either accepts or moves and adjusting the step size (the RWSD) can 

reduce but not totally remove the variation.  There is, however, an associated runtime cost.  

Hence a trade-off between reproducibility and runtime must be struck. 

The variation in the calculated LR due to sample factors and run specific parameters in 

STRmix™ has been explored for a number of different profiles with varying numbers of 

contributors and quality.  Eight profiles were generated ‘in silico’.  These included one, two, 

three and four contributor profiles, in various template (high and low level) and proportions, in 

the GlobalFiler™ kit configuration.  Each profile was interpreted in STRmix™ v2.3.07 ten 

times giving 80 runs in a batch.  For each batch, a different combination of number of chains, 

burn-in and post burn-in accepts were trialled.  In total, sixteen different chain/iteration 

combinations were tested generating data for over 1200 profile deconvolutions.  The data was 

analysed to determine which chain/iteration combination resulted in the best reproducibility 

whilst also considering the impact on run time.  A summary of the number of chain and accepts 

combinations considered is provided in Table 3. 
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Table 3: Summary of run parameters (chains, burn-in and post burn-in accepts) undertaken to interpret 

the sixteen profiles in order to explore the precision of STRmix™.   

Set Chains Burn-in accepts Post burn-in accepts 

1 4 50,000 150,000 

2 4 500,000 200,000 

3 4 50,000 2,000,000 

4 4 500,000 2,000,000 

5 8 50,000 400,000 

6 8 500,000 400,000 

7 8 50,000 4,000,000 

8 8 500,000 4,000,000 

9 16 50,000 800,000 

10 16 500,000 800,000 

11 16 50,000 8,000,000 

12 16 500,000 8,000,000 

13 20 50,000 1,000,000 

14 20 500,000 1,000,000 

15 20 50,000 10,000,000 

16 20 500,000 10,000,000 

 

A summary of the point estimate and 1st percentile (taking into account sampling variation in 

allele proportions and weights) of the distribution of log10(LR) value (called the log10(LR) and 

log10(HPD) respectively) for each of the ten replicates is provided in Appendix 1 (ordered by 

run parameter set) and Appendix 2 (ordered by profile).  In addition summary statistics 

including the Gelman-Rubin diagnostic and posterior means of the allele and stutter variance 

constants are provided.  

Inspection of the results in Appendix 1 and 2 show that as the profile is interpreted using more 

Markov chains and higher numbers of accepts, STRmix™ analyses are more likely to converge 

to the same parameter values, resulting in more reproducible LRs.  The number of chains, total 

number of burn-in and post burn-in accepts and number of contributors all had an effect on run 

times.  Consequently some interpretations were not completed after reviewing the wider 

results. 

The LR for the two GlobalFiler™ single source profiles under all run configuration was 

identical.  Due to the peak heights of these profiles dropout was not considered, resulting in a 

single genotype combination at each locus with weights equalling one.  This was the expected 

result.  The two person mixtures all gave LRs within one order of magnitude across all run 

configurations.  There was an increase in observed LR variability within the three and four 

person mixtures with lower numbers of chains and lower total iterations.   

A summary of the distribution of the log10(LR) and log10(HPD) for ten replicates of the eight 

GlobalFiler™ profiles using eight chains with 50,000 burn-in accepts and 400,000 post burn-

in MCMC accepts is provided in Figure 7. 
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Figure 7:  Log10(LR) (○) and log10(HPD) (◊) of ten replicate interpretations of different GlobalFiler™ profiles, interpreted using eight chains with 50,000 burn-in 

accepts and 400,000 post burn-in MCMC accepts 
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Random walk standard deviation 

At each iteration, the MCMC will have a particular set of values stored that describe the profile.  

When proposing new values for the next MCMC iteration the values will be chosen close to 

the current set of values. The distance of the step-size is based on a normal distribution with a 

mean set to the current value and a variance that dictates step-size. This is known as a Gaussian 

random walk. In a Gaussian walk the size of the step for any given variable is sampled 

randomly from 2~ (0, )N sd .  The size of sd2 is dependent on the parameter and is tuned by the 

RWSD.  Setting the RWSD too high will result in the values for the mass parameters that are 

used to describe the profile differing significantly between steps.  This will allow the Markov 

chain to explore much more posterior topography but will result in many rejected iterations, 

where parameters have been chosen that do not describe the profile adequately, resulting in 

longer run times.  It may also have the effect of requiring additional iterations to ensure fine 

scale posterior topography is adequately explored. A RWSD that is set too small will mean the 

larger scale topography may not be explored sufficiently resulting in a decrease in precision 

and, potentially, accuracy.  While this suggests that values for RWSD which are either too high 

or too low can have determimental outcomes, in practise the MCMC can accommodate a broad 

range of values with little negative effect, but some potentially positive. A demonstration of 

the effect of varying the RWSD on the log10(LR) for the four contributor high and low template 

GloabFiler™ profile is given in Figure 8.  The profile was interpreted ten times each using 

three different values for the RWSD: 0.01, 0.005 and 0.0001.  Interpretations were undertaken 

using eight chains with 50,000 burn-in accepts and 400,000 post burn-in MCMC accepts within 

STRmix™ version 2.4.02.   

Figure 8: Log10(LR) of ten replicate interpretations of the high template (blue bars) and low template (grey 

bars) four person GlobalFiler™ profiles, interpreted using eight chains with 50,000 burn-in accepts and 

400,000 post burn-in accepts and varying RWSD. Runtime (in minutes) is indicated by the black lines, 

which correspond to the right hand vertical axis. 
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Inspection of Figure 8 shows that reproducible LRs (within one order of magnitude) were 

generated using both 0.01 and 0.005.  The run times using a RWSD of 0.005 were significantly 

less however than when using 0.01.  The LRs assigned using a RWSD of 0.0001 were highly 

variable indicating STRmix™ had not likely explored the probability space sufficiently.  On 

balance the RWSD value of 0.005 afforded a reproducible LR with a low run time. 

We have demonstrated that at least 50,000 burn-in and 400,000 post burn-in accepts across 

eight chains and a RWSD of 0.005 are suitable MCMC run parameters leading to reproducible 

LRs (within one order of magnitude) for many different types of profile.  These settings are 

likely to be excessive for many one, two and some three person profiles.  They will be sufficient 

for the remaining three and most four person profiles.  Decreasing the number of accepts may 

mean that STRmix™ has not converged and, even with convergence, more variability is 

expected.  Increasing the number of accepts has been shown to help with reproducibility for 

more complex profiles and will certainly mean higher run times.  A summary of the 

approximate run times for different profiles interpreted using STRmix™ v2.4.02 on a 

laptop(Windows 7 64 bit, Intel Core i7-5600U CPU, 2.6 GHz, 16 GB RAM) are given in Table 

4. 

Table 4: Approximate time taken to complete interpretation of various GlobalFiler™ profile types within 

STRmix™ (hours:minutes:seconds), 8 chains with 50,000 burn-in and 400,000 post burn-in MCMC 

accepts, and RWSD of 0.005. 

Number of contributors High template profile Low template profile 

Single contributor 0:00:12 0:00:12 

Two contributors 0:00:34 0:01:13 

Three contributors 0:16:52 0:16:42 

Four contributors 1:53:37 1:42:50 

 

In calculating the LR, the numerator is the weighted sum of the probability of fewer genotype 

sets than the denominator.  In many cases the numerator may have only one term.  Since the 

denominator is the weighted sum across the probability of many genotype sets it has a stability 

to variation in the LR.  However the numerator of the LR is more sensitive and this effect is at 

its greatest when the weight for the numerator genotype set(s) is low.  This is most obvious for 

profiles where the inclusion of a POI requires an improbable peak height variability (observed 

as large heterozygote balances or dropout) i.e. where the fit of the POI to the profile is poor, or 

when the inclusion of the POI requires one or more drop-in events to have occurred (which 

will also increase LR variability due to allele proportion uncertainty).   

We have demonstrated that higher order mixtures and profiles with low template and/or poor 

quality lead to a decrease in precision (replication in LR across replicates runs).  As a general 

guide, we have observed that if the overall LR is greater than 1 and one or more of the locus 

LR values are less than or equal to 1, the POI is likely to have a poor fitting genotype to the 

observed data at these loci.  In these cases the MCMC can be run at 10 or more times the default 

number of accepts and/or by increasing the RWSD in order to ensure improved precision. 

In general, using the default settings as described above, when comparing a POI who is a good 

fit to the observed profile the difference between the smallest and largest LR is small in relation 

to the size of the LR.  For profiles where an unlikely stochastic effect has occurred, or the POI 

is a poor fit to the profile then the difference between the largest and smallest LR may be higher 
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but again small in relation to the LR.  In the 1200 dataset described above (Appendix 2) the 

largest differences between the smallest and largest log(LR) using the recommended run 

settings was 1.3 fold.  For profiles where an unlikely stochastic effect occurred, or the POI was 

a poor fit to the profile then the difference in log(LR) values can be above one.  These situations 

can be minimised or eliminated via policies that suggest increasing iterations based on the 

profile data.   

Reproducibility 

Reproducibility is often stated as one of the main principles of the scientific method.  A value 

is reproducible if there is a high degree of agreement between LRs run on the same input in 

different locations by different people.  Reproducibility is one component of the precision of a 

measurement or test method. The other component is repeatability which is the degree of 

agreement of LRs on the same input by the same observer in the same laboratory.   

Reproducibility is not intended to mean “exactly the same”.  Reproducibility means that the 

results are very similar within the limits of measurement or they lead to the same conclusion.  

In any real world application we must accept measurements to a degree of resolution and 

models of a limited level of complexity, or we must accept that the property we are measuring 

has a degree of variability.  A level of uncertainty can exist in a measurement (or model) and 

yet the measurement can still be informative. In fact science and statistics rely on this fact.  

If the same or a different operator interpreted the same input file using STRmix™ with the 

same random number seed4 they would obtain exactly the same answer.  So why then do we 

not set the seed and obtain exactly the same answer each time?  Strangely this is dishonest 

repeatability.  It would give a false impression of perfect precision.  We prefer to give a true 

measure of our precision.   

For very simple situations we can manually calculate the value of the LR from the mixture 

deconvolution part of the software.  For the remaining situations, which comprise the vast 

majority of situations, we can predict limits and patterns but not exact values (for example by 

referring to plots such as those in Figures 2 through 6).  If we retain the concept of a correct, 

but unknowable, answer, and we plot the output from STRmix™ against these limits the 

patterns can be assessed to draw conclusion about the function of the STRmix™ models. 

Guideline 3.2.4. Case-type Samples 

The mixtures described in section 3.2.3 above (Precision) include a range of profile types 

typically encountered in casework.  These profiles include single source and mixed DNA 

profiles containing up to four contributors generated for both Identifiler™ and GlobalFiler™ 

profiles.  In addition, the developmental validation of STRmix™ involved the testing of a 

number of profiles generated using other kits and different capillary electrophoresis 

instruments (3130 and 3500) including ProfilerPlus®, PowerPlex® 21, Fusion, MiniFiler™, 

SGMPlus™ (profiles amplified at 34 cycles) and NGM Select™ (data not shown).  Back stutter 

is explicitly modelled in all versions of STRmix™ and version 2.4 introduces to modelling of 

forward stutter.  The profiles included contributors with shared alleles.  STRmix™ models the 

variability of single peaks.  The variance of this model is determined by directly modelling 

laboratory data.  This is undertaken within STRmix™ using the Model Maker function.   

 
4 No computer code can actually produce a truly random number. When you tell a computer to generate a sequence 

of random numbers it draws upon an algorithm that generates what looks like (to humans) as being random, but 

will eventually start repeating itself. If a computer was told to generate a set of 1000 random numbers twice then 

it would generate two lists of 1000 seeming random looking numbers, but the lists would be identical. The way 

to get around this is by providing the algorithm with a random starting value (or ‘seed’). 
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Mock samples versus casework 

Three experiments have previously been reported comparing the use of mock case samples and 

casework samples, or single source and mixed DNA profiles, to form interpretation policies 

[31, 51, 52]. None of the studies found any obvious difference between these sets.  This may 

be the expectation from theory.  Peak height is approximately linearly proportional to the 

number of template molecules sampled.  The standard deviation in that peak height is 

proportional to the square root of the number of template molecules [53, 54].   

If we posit that casework has degradation and inhibition effects not modelled with mock 

samples then we need to see how that would affect the peak heights and their variability.  

Degradation effectively reduces template from the starting extract but whatever number of 

quality template molecules survive this number is still the primary explanatory variable for 

peak height and relative variation.  Therefore if 50% of the template was degraded we would 

expect this to behave similarly to a mock sample with half the template.   

The effect of inhibition is more difficult to predict.  Inhibitors may bind to the single stranded 

DNA or to the polymerases or any other co-factor.  If they are simply removing template from 

the reaction then they would act the same as degradation.  In any case what we tend to observe 

is that a whole locus or sets of loci amplify poorly and all peaks are lowered [55].  We could 

easily see how the relative variability might remain the same.  STRmix™ explicitly models 

locus specific amplification efficiencies (LSAE).  The LSAE model reflects the observation 

that even after template DNA amount, degradation and variation in peak height within loci are 

modelled, the peak heights between loci are still more variable than predicted, resulting in 

poorer amplification of some loci possibly due to inhibition.  The variance of the LSAE model 

is determined by directly modelling laboratory data (see [31]).  LSAE values for each 

STRmix™ interpretation appear within the results.  We can demonstrate the relationship of 

LSAE values to average peak heights (APH) via a simple plot.  The LSAE values should mimic 

the average peak heights of the locus if degradation is minimal, otherwise you will see a trend 

across sets of loci within dye colours according to molecular weight.  This is demonstrated for 

one single source Identifiler™ profile in Figure 9.  The differences in APH and LSAE in this 

figure are due to overall profile degradation which is modelled separately.   

We have described above the theoretical expectations from the interpretation of inhibited and 

degraded profiles using STRmix™.  Separately, we have interpreted a number of DNA profiles 

derived from various mock crime samples such as cigarette butts, bloodstains on wood, touched 

items and worn clothing.  Inspection of the diagnostics from these STRmix™ interpretations 

including degradation and LSAE values align with our expectations (data not shown). 

 

  



 

Page 22 of 26 
 

Figure 9: Plot of APH (bars) and LSAE value (line) for each locus ordered by molecular weight for a single 

source Identifiler™ profile 

 

Guideline 3.2.6. Accuracy 

There is a subset of profiles where the expected answer may be replicated relatively easily by 

hand.  By comparing the software output with the expected answer, the performance and 

limitations of the software may be examined.  An understanding of the models behind the 

methods is essential for this process.  Examples of where we can predict the answer include 

single source profiles, mixtures where the profile of a major contributor is unambiguous 

(major/minor) and mixtures of two contributors in equal proportions (balanced).  STRmix™ 

has been shown to give the expected result in each case [48]. 

Functionality has been installed within STRmix™ to facilitate validation and performance 

checks.  This includes the extended output and set seed functions.  The extended output 

contains all of the parameters and calculated probabilities for each iteration within a run.  The 

‘set seed’ function turns off the random processes within STRmix™ and allows direct 

comparison of runs within and between different versions of the software.  STRmix™ is built 

in two separate parts that communicate via a text file.  The first part runs the MCMC, the second 

the LR calculation.  Hence, in some version releases it is possible to test one part using an old 

output from the other part variously using the set seed or checks of the extended output to allow 

the direct comparison of outputs and lessen the validation load.   

The following functionality and outputs from STRmix™ were verified by hand as part of the 

developmental validation tasks for each commercial version:  

1. Expected allele and stutter heights given mass parameters  

2. Expected peak heights of drop or ‘Q’ alleles given mass parameters  

3. Probabilities given expected and observed peak heights and varying analytical 

thresholds 

4. Locus specific amplification efficiency calculations  

5. Summation of probabilities for each allele in a locus and across a profile 

6. Summation of probabilities across multiple replicate profiles  

7. Informed priors on mixture proportion  
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8. LR values where there are no assumed contributors  

9. LR values for propositions with assumed contributors  

10. LR values with varying theta values 

11. Relatives calculations (where a relative is considered as an alternate contributor under 

Hd) 

12. Sampling from the Beta distributions for theta 

13. LR stratified point estimates  

14. LR highest posterior density (HPD) interval values 

15. Gaussian walk 

16. Gelman-Rubin statistic, ESS, weight resampling 

17. Drop-in function 

18. Database search functionalities 

19. Model maker. 

The comparison of expected heights, probability and LR values was conducted in MS Excel or 

by comparison to results generated in the rHPD package written by Professor James Curran in R 

[56].   

The likelihood ratios calculated using STRmix™ have been compared to two probabilistic 

genotyping methods employing semi-continuous models and two binary methods of profile 

interpretation [48, 57].  Where a profile was able to be fully resolved or for single source 

profiles where dropout was not a consideration (weight, wi, equals one at each locus) the LR 

between STRmix™ and the semi-continuous methods were comparable where they were using 

the same population genetics model.  For mixed DNA profiles, generally STRmix™ resulted 

in higher LRs for ground truth known trials as continuous models use more of the profiling 

information (for example peak height information) compared with semi-continuous and binary 

interpretation methods. 

Conclusion 

Within this paper we describe the exercises undertaken as part of STRmix™ developmental 

validation following the SWGDAM guidelines for the validation of probabilistic genotyping 

software [1].  This work demonstrates that STRmix™ is suitable for its intended use for the 

interpretation of single source and mixed DNA profiles including profiles of a complex and 

low level nature.   

A number of different parameters within STRmix™ that are known to affect LR reproducibility 

were investigated.  We have interpreted over 1200 profiles and conclude that at least 50,000 

burn-in and 400,000 post burn-in accepts across eight Markov chains and a RWSD of 0.005 

are suitable STRmix™ run parameters leading to reproducible LRs (within one order of 

magnitude) for many different types of profile.   

Having undertaken both internal and developmental validations following the SWGDAM 

guidelines we find them a good template within which to work.  Recommendations 3.2.5 

(control samples) and 3.2.6.2 (analysis of raw data files) are not applicable to STRmix™. 
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