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Abstract 

The interpretation of mixtures is moving away from the binary method towards probabilistic 

genotyping.  Previous scholarship noted limitations of the binary method for very low template 

profiles or profiles with a high ratio for the contributors (high ratio mixtures).  By modelling 

stochastic effects, probabilistic genotyping has overcome many of these limitations. 

Probabilistic genotyping makes it possible to make statements about the probability of the 

observed peaks, given different propositions, for mixtures that used to be considered 

uninterpretable using the binary method. A study of the lowest possible trace contribution to a 

mixture produces the expected result using probabilistic genotyping: an equal distribution of 

genotype weights and an average likelihood ratio of one for non-donors. A discussion of 

validation studies highlights that validation is not about testing every possible combination of 

variables, but about testing for the expected trends in likelihood ratio values in scenarios with 

a predefined expectation for these values. 
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1. Introduction 

DNA mixtures occur when two or more individuals contribute to a sample.  Mixtures can vary 

greatly in complexity.  Key variables are the number of donors, the template amount of each 

donor’s DNA, and the level of DNA degradation of each donor.  There is little published 

material that we can find about behaviours relating to the limits of DNA mixture interpretation 

in the 90s and 00s.  From our own personal knowledge, we recall that two-person mixtures 

were regularly examined in the 90s and that a ratio of 10:1 was considered a reasonable limit 

beyond which the profile was considered too complex to interpret.  Three-person and higher 

order mixtures were seldom attempted.   

It is difficult to find a clear statement of the logic for the 10:1 rule of thumb. Clayton and 

Buckleton ([1] citing Clayton et al. [2]) state that the alleles of the minor must be above 
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background noise:  "the threshold represents approximately a 1:10 mixture ratio…".  This 

would suggest that the 10:1 rule of thumb is consequential on the analytical threshold (AT) and 

not causal.  For a modern 3500 capillary electrophoresis (CE) machine the AT is often of the 

order of 50-200 rfu.  Peaks can be up to 30,000 rfu in height.  This suggests that a major 

contributor’s peak heights around 20,000 rfu and a trace contributor’s peak heights around 100 

rfu would both be in the analysable range.  This is a ratio of 200:1.   

We cannot find a mention in Clayton et al. [2] of a 10:1 rule.  What we did find was "When the 

minor component of a mixture falls to about 5:1 or less, there are additional complications in 

interpretation due to problems in discerning true alleles—present as minor bands—from other 

artefacts of the system. Conversely, as the ratio of a mixture increases interpreting the major 

component becomes less complicated…. when the minor component of a high-ratio mixture is 

under consideration, the evidential significance is often lower ...". 

 

The binary method for interpreting mixtures was formalised for two-person mixtures [3, 4] into 

a set of rules for their interpretation.  The ISFG DNA Commission papers in 2006 and 2012 

also focussed on two-person mixtures [5, 6] but we cannot locate a mention of the 10:1 rule of 

thumb in them.  With hindsight, a ratio higher than 10:1 should not have been a problem even 

with the manual LR based interpretation technologies available at the time.  Such mixtures 

would, however, have been a challenge for combined probability of inclusion (CPI) based 

methods [7]. 

By 2011 we were aware of three- and four-person mixtures being interpreted in casework 

within our own laboratories.  Again we can find no reference from a guideline producing body 

or other authoritative source either sanctioning or discouraging an extension to higher order 

mixtures. 

The recent report and addendum [8] of the President's Council of Advisors on Science and 

Technology (PCAST), sanctioned the interpretation of two person mixtures at any ratio and 

three-person mixtures with the minor (as referred to in the report) or person of interest (POI) 

(as referred to in the addendum) no less than 20%.  The difference between the guideline when 

using the words “minor” or “person of interest” is considerable. 

The PCAST report limited itself to validation studies published in the peer reviewed literature, 

reports in newspapers, and the National Institute of Standards and Technology (NIST) and 

Innocence Project presentations.  PCAST did not explicitly state concern about the use of 

computer programs to interpret higher order or higher ratio mixtures.  In fact, they do appear 

to countenance the interpretation of higher order and high ratio mixtures once studies are 

published defining their limits.  The requirement for publication in the peer reviewed literature 

is certainly based on valid considerations but is probably unimplementable, unnecessary and 

unproductive.  We will discuss this in a separate section (section 3).   

We speculate that the 10:1 rule slowly embedded itself in the collective consciousness of 

forensic biologists without the concern being formally articulated or investigated empirically. 

Taken collectively the 10:1 rule and the PCAST report represent an unformalised unease with 

mixtures where the component of interest is in very low template or low proportion.  This is a 

concern we also recall from our own pasts.   

It is worthwhile exploring the possible causes of the unease with high ratio mixtures.  Again 

this is hampered by a lack of explicit published statements to this effect although John Butler 



 

 

gives some insight [9] at page 176.  For simplicity consider a two-person mixture with one 

contributor, the major, in vast excess to the other, the trace.  The major will make large allelic 

peaks as well as back stutter peaks.  It may also make forward, double back, and some exotic 

stutter peaks, such as minus 2 bp stutters at SE33.  With enhanced sensitivity methods there 

may also be drop-in peaks.  If the trace contributor is of the order of 1% of the total intact DNA 

then it would be impossible to detect the presence of its alleles were they to fall on the alleles 

and back stutters of the major.  Where these peaks fall on the forward, double back or exotic 

stutter positions the presence of a trace contributor may be suspected due to higher than 

expected peak heights but it would be difficult to conclude the presence of a trace contributor 

with confidence.  It is always impossible to determine with absolute certainty if a small peak 

is from a trace contributor or a drop-in event.   

There is a reasonable negative reaction when faced with such data.  When considering a 

proposed set of contributors, say the complainant and person of interest, some peaks that are 

expected are not present (e.g. drop-out), some peaks that are present are not expected (e.g. 

drop-in), some that are present and should be are of an unexpected height (e.g. due to stochastic 

effects).    

We will need to use the term very low template or high ratio often so, to ease the flow of this 

text we will term these ‘high ratio’.  For the avoidance of uncertainty, we interpret the smallest 

component where the other components represent most of the intact DNA in the extract.   

In the last few years interpretation software have become available that implement a method 

termed probabilistic genotyping (for example see [10, 11]).  These new methods have a 

remarkable ability to extend the range of mixtures reliably interpreted.  This new ability abuts 

awkwardly with the orthodoxy that there is something dangerous with interpreting high order 

mixtures and that limits must be set.   

In section 2 we will explore the risk of interpreting high ratio mixtures using a probabilistic 

genotyping software. Section 3 discusses recent issues related to validation, including the 

PCAST report, four-person mixtures, the effect of replication and known contributors, and the 

magnitude of validation tests. The discussion and conclusion follow in sections 4 and 5, 

respectively. 

2. High ratio mixtures 

2.1. Variability at low height 

The nature of forensic work is that the questioned sample is often suboptimal.  There is a 

number of ways that the sample may be compromised:  First, there may be very little intact 

DNA available or second, there may be plenty of DNA but the component of interest is a very 

small fraction of the total.  In both of these situations, the profiles can fairly be termed ‘low 

template’.  It is valuable to define two other terms:  Low Copy Number and enhanced 

sensitivity methods.  Low Copy Number is a term from the UK used to describe a particular 

technique based on 34 cycles of polymerase chain reaction (PCR)1 [4].  The use of the term 

‘Low Copy Number’ is likely to create confusion and it is better not used.  Enhanced sensitivity 

methods include protocols with increased PCR cycles, increased capillary electrophoresis 

injection time and/or voltage.   

                                                           
1 The ‘standard’ number of cycles is usually 28 to 30 for autosomal multiplexes 



 

 

Low template profiles show increased stochastic effects.  This means that allelic and stutter 

peaks may be bigger or smaller than expected.  They may be so small that they cannot be 

detected, this is termed drop-out.  Using enhanced sensitivity methods in essence scales up the 

expected heights of the peaks but also scales up the differences between the expected and 

observed peak heights (commonly referred to as peak height variability, or stochastic 

imbalance).  An additional complexity is the appearance of peaks not associated with the DNA 

extract.  For these, Buckleton coined the term drop-in by analogy to drop-out.  There is the 

potential for one or two of these in an enhanced sensitivity profile (e.g., [12]).  Drop-in is 

unobserved or very rare at standard cycle numbers with standard ATs (e.g., [4]).   

The absence of peaks expected to be present, the appearance of unexpected peaks, and the 

variability in the height of those that are there, understandably raise concern.  We have heard 

comments such as "Low template profiles are unreliable", "I would not look at that" and "The 

limit is 10:1".    

One train of thought leading to the incorrect conclusion that probabilistic genotyping analyses 

of low level mixtures are unreliable might be: 

1. low level DNA leads to variability in peak heights and hence non-reproducible profiles, 

2. non-reproduciable profiles represent unreliable data, 

3. unreliable data analysed by probabilistic genotyping produces unreliable results.  

It is worthwhile defining what is meant by an unreliable DNA profile.  Vital to this definition 

is the purpose intended.  For example, is wood a reliable fuel?  Yes, it is reliable for home 

heating but it is unreliable for fuelling fighter jets.  We will return to this point in the discussion. 

Consider another example that illustrates the strength of the inferences that can be made from 

what may seem like very low quality, or even corrupted, data. Below are the first 42 letters2 

from a book where we have dropped out letters with probability 0.4, dropped in letters with 

probability 0.005, and changed capitalisation with probability 0.5.   

when N O D h.m S. b A, As N ur LiSt 

It might be pretty hard to determine the book from which this text originated.  You could 

reasonably say that you could not reliably determine the book from this evidence.  But now we 

ask you could this text come from the beginning of the Origin of Species, the first 42 letters of 

which are:  “When on board H.M.S. Beagle, as naturalist….”? Yes, there is a non-zero 

probability of observing this configuration of letters if it comes from the beginning of the 

Origin of Species. In fact, there is a probability of 174 10−  of observing this text if it comes 

from the beginning of the Origin of Species. 

Could this evidence come from the first 42 letters of the Bible which, in the version to hand, 

are:  “In the beginning God created the heavens a(nd the earth)”?  Technically, yes, but the 

amount of corruption required would tend to support the conclusion that it wasn’t the source 

of the text (there is a probability of only 968 10−  of observing this text if it comes from the 

beginning of the Bible). We could repeat this exercise with hundreds of other first lines but that 

would rapidly become tedious.  Our point is that this highly corrupted evidence still gives a 

very strong inference in support of the book being the Origin of Species rather than another 

book.  This analogy is good but inexact.  There are 26 letters in the alphabet and if we add in 

punctuation this is more than the number of alleles typically present in the population at any 

STR locus.  In addition we could have mimicked a mixture by taking letters from different 

books.  However we hope the message survives.  It is twofold:  We need to think of the 

probability of the evidence if it comes from the person of interest (in our example The Origin 

                                                           
2 we include punctuation and spaces 



 

 

of Species) and the probability of the evidence if it comes from someone else.  If we do this, 

we can reliably draw inferences from partially corrupted evidence.   

Table 1.  A simulated questioned sample from a victim's breast.  The alleles corresponding 

with the victim are bolded.  The alleles "not from the victim" have been simulated from a 

person of interest (POI).  With probability 0.4 the allele is dropped out.  With probability 0.005 

an allele is dropped in.  Alleles of the simulated trace that appeared in allelic or back stutter 

positions of the major profile were removed from the list. Peaks in forward stutter positions of 

the major are italicised. 

Locus 

Profile from breast 

Major profile, 

corresponds with 

victim 

Trace alleles not corresponding to the 

victim or back stutter. Peaks in forward 

stutter positions are italicised 

D8 11 12 13  

D21 28 28 29 30 

D7 11 12   

CSF 10 11   

D3 15 15 16  

TH01 7 9.3   

D13 10 13 11  

D16 9 11 12  

D2 19 23   

D19 13 13 17  

vWA 17 19   

TPOX 9 11 12  

D18 14 16 12 19 

D5 11 13   

FGA 21 22 25  

 

Table 1 gives a simulated Identifiler profile with a major and a trace contribution.  In making 

this profile an allele of the trace contributor is dropped out with probability 0.4.  With 

probability 0.005 an allele is dropped in.  We ask the question: What is the genotype of the 

donor of the trace?  It would be impossible to answer this question.  The alleles labelled in the 

column "trace alleles not corresponding to the victim or back stutter" may be from the donor 

or may be drop-in.  Because of drop-out the true donor may have many alleles not seen in the 

profile.   

Next look at Table 2.  This has two proposed genotypes added for POIs.  Could POI 1 be the 

donor of the trace alleles in the breast profile?  One can readily see that this proposal can easily 

make the trace alleles seen in the mixture.   

  



 

 

Table 2.  The same profile as shown in Table 1 with two proposed genotypes for persons of 

interest (POI) given.   

Locus 

Profile from breast 

POI 1: proposed 

genotype 

POI 2: Proposed 

genotype 
Major profile, 

corresponds with 

victim 

trace alleles 

neither the victim 

alleles nor back 

stutter 

D8 11 12 13  13 13 14 15 

D21 28 28 29 30 29 30 30 30 

D7 11 12   10 11 10 10 

CSF 10 11   9 13 10 10 

D3 15 15 16  14 16 16 16 

TH01 7 9.3   9 9.3 9.3 9.3 

D13 10 13 11  11 13 11 11 

D16 9 11 12  12 12 11 12 

D2 19 23   17 23 17 18 

D19 13 13 17  13 17 14 16 

vWA 17 19   17 18 14 18 

TPOX 9 11 12  9 12 8 8 

D18 14 16 12 19 12 19 12 18 

D5 11 13   11 11 11 12 

FGA 21 22 25  20 25 21 22 

Next look at POI 2 in Table 2.  This is another proposed genotype.  Could POI 2 be the donor 

of the trace alleles in the breast profile?  The answer is yes, just.  We would speculate that five 

of the peaks are large forward stutters and that there are five drop-in events.  But realistically 

it is much easier to make the trace profile from proposed genotype 1 than proposed genotype 

2. 

This is how probabilistic genotyping works.  It assigns a probability for the evidence profile if 

it comes from various proposed genotypes.  Most of the software programs test all realistic 

genotypes3 without knowledge of the genotype of the POI.  This is true of the probabilistic 

genotyping software STRmix™, which was used to obtain the results presented in sections 2.2, 

3.2 and 3.3 of this paper.   

We are not advocating laissez faire.  There are definitely limits.  There are in fact two types of 

limits that laboratories using probabilistic genotyping systems will face, one is the limit of the 

functioning of the software, which will be bound by the models being used4, the other is a cost-

benefit limit whereby the question is not whether an analysis can be done, but rather whether 

it should be done (see section 1.4 in [13] and section 2.3 in [14]). But we also need to keep up 

to date.  The new probabilistic genotyping software products used to interpret complex DNA 

                                                           
3 Many software start, at least theoretically, with a list of all possible genotypes.  These are sometimes culled to 

those that are plausible, based on an initial analysis of the profile data or an analysis of those that were visited at 

least once during burn-in. 
4 For example, a probabilistic system might not have a model for dealing with saturated data, and so the limit 

would be that any profiles with peaks present at an intensity above a predetermined capillary electrophoresis 

saturation threshold would be beyond the limits of the software. 



 

 

profiles are much better at drawing source inferences than previous methods, which were 

largely ineffective with low template profiles [11, 15, 16].   

In this paper we will be dealing with likelihood ratios as the expression of evidential weight 

and hence the term false inclusion will require some reassessment.  Taylor et al. has suggested 

the term misleading LRs [17].   

It may be worthwhile discussing what we should expect from DNA interpretation in an ideal 

world.  We need to describe the profile as having information.  For example, good template, 

low contributor number profiles will be described as having high information content.  Low 

template multi-contributor profiles will be described as having low information content.  The 

latter is considered low information content as, even though it likely has more points of data, 

the information they collectively provide about the genotypes of the donors (compared with a 

random genotype assignment) is lower than the former. We suggest that we would want a 

strong indication of inclusion for true donors and a strong indication of exclusion for false 

contributors.  As the information content diminishes we expect the strength of the inference 

either way to diminish until such a time as the result of the analysis is described as 

uninformative.   

2.2. Lowest possible trace 

It is possible to look at mixtures where one contributor is “not there.”  This describes the 

situation where we have, say, a ground truth profile known to be single source but we treat it 

as a two-person mixture.  One contributor, therefore, is not there.  This is one of the standard 

tests prescribed by the SWGDAM guidelines for the validation of probabilistic genotyping 

systems [18].   

Before we describe the outcome of this experiment we discuss what the fears might be since 

this clearly violates the 10:1 rule of thumb.  The only realistic cause of concern would be that 

we would produce a very large inclusionary LR for a false donor.   

We compared a real single source profile with one manufactured to have all heights at 

expectation (all stutters at perfect ratio and all heterozygotes in perfect balance).  In Table 3 

we give the layout of the D8S1179 locus as an example.  At this locus the true contributor is a 

12,12 homozygote. 

Table 3.  Peak heights and stutter ratio for a real and manufactured single source sample.   

  peak height (rfu) 

Real Manufactured 

allele 
11 269 221 

12 4212 4401 

Stutter ratio 6.39% 5.02% 

 

The “perfect” stutter ratio for this allele is estimated by empirical studies is 5.02%.  The real 

sample has a stutter at position 11 that is slightly too large but certainly not so large that it 

would draw any attention.  However, when we treat this as a two-person profile, it is easier to 

explain the 11 height if there is an allele of the imaginary trace at 11. 



 

 

In Table 4 are the genotype weights from STRmix™ assuming two contributors. 

Table 4.  The genotype combinations of the major and imaginary trace, and the weights 

produced by STRmix™ for the real and manufactured samples.  Q refers to any allele other 

than 11 or 12. 

Genotype of the Real Manufactured 

major imaginary trace Weights 

12,12 

11,11 0.357 0.152 

11,12 0.219 0.166 

Q,11 0.207 0.167 

Q,Q 0.074 0.175 

12,12 0.073 0.168 

Q,12 0.070 0.172 

For the manufactured sample there is no sensible place to put the trace, and hence the software 

distributes the weights equally.  However, for the real sample there is some slight advantage in 

having a trace with the 11 allele.  We see that genotypes for the imaginary trace carrying one 

or two copies of the 11 allele are preferred (with over 78% of total weight).   

Figure 1 shows the log10(LR) (henceforth we will refer to this as the log(LR))for 10,000 

simulated false donors tested as the trace against these two samples.  The y-axis gives the 

log(LR).  Positive log(LR)s give support for the inclusion of the donor and negative log(LR)s 

give support for the exclusion of the donor. We give the maximum and average LR for the 

10,000 false donors.  The average LR is expected to be about one if the system is operating 

properly [17]. 

Note that the values in Figure 1 show the power of even very small perturbations from expected 

peak heights to add inclusionary or exclusionary power to either real or imagined genotypes.  

This phenomenon has been shown to be true even for highly complex and low level profiles 

[19]. It is this same ability of probabilistic genotype software to make use of small amounts of 

fluorescence that also means it can be used for probabilistic analysis of real trace contributors 

in high ratio mixtures.  

Recall that the trace in this experiment is not there.  This experiment shows LRs for the 

imaginary trace above 1 and, in the case examined, up to 33.  This explains the vertical height 

of the distribution of false donor tests for very low template contributors that has been observed 

in all specificity tests done, including [20]. For any real profile, mixed or otherwise, there are 

some stochastic effects.  There is an advantage in having the very low level trace with alleles 

in those positions.  Hence some false donors help explain the profile whilst others actually 

make it harder to explain.  Those that help get a positive log likelihood ratio and those that 

hinder get a negative one.   

In theory it should be possible to calculate the maximum LR for any given non-existent 

contributor but we are aware of no application that does this.  We can see from the mathematics 

that the LR for a non-existent contributor is nearest 1 when the mixed or unmixed profile is 

near perfect balance with regard to peak heights.  When there are consistent stochastic effects 



 

 

at all loci at the extreme edge of expectation then the LR for some non-existent contributors 

would be large.   

 

Figure 1.  The log10(LR) for 10,000 simulated false donors tested as the trace against the real 

and manufactured samples.  Maximum values of the LR were 33.2 and 2.2 for the real and 

manufactured respectively.  Average values of the LR were 0.95 and 0.97 for the real and 

manufactured respectively.   

This would tend to focus attention for one sensible search for limits on high template profiles 

with poor PCR.  We suggest that a targeted approach to searching for limits, such as this, based 

on key analyses and understanding of the mathematics is likely to be a powerful supplement or 

replacement for the blind shotgun approach of trying many combinations of genotypes and 

templates recommended by PCAST [8].  

To prove this, we "adjust" a good template profile of a three-person mixture and treat it as a 

four-person mixture. The mixture in question was produced using GlobalFiler® under 

manufacturer’s instructions. The resulting profile was run on a 3500xl capillary electrophoresis 

instrument (ThermoFisher). The total amount of DNA was 200 pg, with the contributors added 

in proportions 3:2:1. When we analysed this as a four-person mixture the resulting probabilistic 

genotyping analysis gave mixture proportions of 0.54:0.25:0.21:0.00 (the STRmix™ estimate 

for the proportion of the non-existent trace was 0.0004). The most trace component is not 

required (in fact we would say it is not there) and the software recognises that fact by giving it 

a very low proportion. We then added in some imbalance by randomly changing the peak 

heights of all peaks in the profile by some value uniformly chosen between -50% and 50%. 

The result was mixture proportions 0.54:0.28:0.18:0.00 (again, where the estimate for the most 

trace component was 0.0005), still the additional contributor is not required. The original 



 

 

profile could be described better with the DNA models (by approximately 16 orders of 

magnitude) and in the imbalanced profile both stutter and allelic peak height variability had to 

be pushed into the higher tail of their prior distributions. The reason the non-existent 

contributor was not assigned a higher mixture proportion in the probabilistic genotyping 

analysis was because the imbalances were added in a stochastic manner, i.e. there was no 

consistent pattern of contribution across loci that could be explained by a fourth individual. 

However, we see the same pattern of LRs from Hd true testing as was seen in Figure 1, that is 

the increased imbalances (although not yielding much additional mass to the non-existent 

contributor i.e. from 0.0004 to 0.0005) utilised the tiny amount of mass they did provide to ‘fill 

in’ some fluorescence gaps where it was able and the result was a wider distribution of LRs 

(Figure 2). 

 

Figure 2.  The log10(LR)s for 100,000 simulated false donors tested as the trace against the 

unaltered profile (“Normal”) and the profile with heightened imbalances (“High imbalance”).   

3. Proof of validity 

3.1. PCAST report 

PCAST is rightly strongly positive about probabilistic genotyping and sees it as a large 

improvement over previous methods.  They note perceived limits to the current proof of 

validity.  Particularly they highlight gaps regarding high ratio and high contributor number 

mixtures.  This arises because: 



 

 

1.  They have limited themselves for proof of validity to material in the peer reviewed 

literature5.  They discount the work presented in a book [22] which, of course, is not peer 

reviewed.  A broader range of sources for matters other than validity is used.   

2.   They disregard any validation studies using casework samples6,  

3.   They consider the only proof to be running a sample of the same type as the questioned 

sample and observing the result.  Subsequent discussions never progressed the definition 

of how similar the test needed to be to the analysis in question or how the test was scored 

as either successful or not. 

PCAST appears concerned about low template, high ratio, and allelic masking.  As discussed 

above these are key issues from the past.  What we have not done is prove to these respected 

authorities that any concern about this is largely ameliorated by the advent of probabilistic 

genotyping.  This is the paradigm shift in DNA interpretation referenced in the title.   

There is actually a very considerable amount of validation data available in the internal 

validations of laboratories in addition to the developmental software validations.  Internal 

validation summaries are close to unpublishable in journals, as they are considered not novel.7   

It has never been a requirement to publish the results of internal validation studies in the past.  

Publication does not ensure validity.  There are many examples of published material being 

subsequently refuted8.   

Equally, the absence of publication does not indicate invalidity.  There are a great many ways 

that validity can be demonstrated.  We do not reject the expectation that validity be 

demonstrated; we simply ask for some achievable criterion.     

The Scientific Working Group on DNA Analysis Methods has published comprehensive 

guidelines for the validation of probabilistic genotyping software [18].  These guidelines accept 

                                                           
5 Subsequent to the appearance of the PCAST report and addendum the FBI internal validation has been published.  

PCAST do signal that:  “The range in which foundational validity has been established is likely to grow as adequate 

evidence for more complex mixtures is obtained and published.”  However no mechanism appears to exist to update 

the recommendations.  Emails and phone calls to Eric Lander and PCAST are unanswered at writing.  [21] Moretti 

TR, Just RS, Kehl SC, Willis LE, Buckleton JS, Bright J-A, et al. Internal validation of STRmix for the interpretation 

of single source and mixed DNA profiles. Forensic Science International: Genetics. 2017;29:126-44. 
 
6 In a meeting with PCAST members on 18th November 2016, Lander expressed the view that casework samples 

were not suitable for the empirical work called for by PCAST.  We do not discuss the correctness or otherwise 

of that view here. 
7 At a session of the National Commission on Forensic Science in Washington D.C. on 10th January 2017 

chaired by Dr John Butler (see https://www.nist.gov/topics/forensic-science/ncfs-meeting-12-webcast for the 

webcast, last accessed on May 19, 2017), we heard from Dr Michael Peat the editor of the Journal of Forensic 

Sciences.  Peat stated that the journal's policy was not to publish the results of internal validation studies.  

Shortly after, at the same session, we heard from Dr Eric Lander, the co-chair of PCAST.  Lander, who had not 

been present for Peat's presentation, described PCAST's requirement for publication.  The friction between these 

forces is producing much heat but little light.   

8 Vulcan was supposed to be a planet somewhere between Mercury and the Sun. Its existence was proposed 

based on certain peculiarities of Mercury’s orbit [23] Lettre de M. Le Verrier à M. Faye sur la théorie de 

Mercure et sur le mouvement du périhélie de cette planète. Comptes rendus hebdomadaires des séances de 

l'Académie des sciences (Paris). 1859; vol. 49 379-83.. Einstein’s theory of general relativity (1915) explained 

once and for all why Mercury orbited the Sun in such a strange fashion. This inspired the name of the home 

planet of the character Spock from Star Trek. 
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the reality that publication is difficult.  However, validations are routinely made available for 

inspection and in some cases have been placed in the public domain.  These unpublished 

internal validations are better than something generic but published.  This is because they are 

specific to the exact methods employed at the laboratory.   

3.2. Example of empirical studies 

In Figures 3 and 4 we show a plot from a fraction of the data used as part of one validation of 

STRmix™.  These are profiled using GlobalFiler as per manufacturer’s instructions and run on 

two different 3500xl CE machines using a 50 rfu AT.  Mixtures were constructed in varying 

proportions and amplified with varying amounts of template DNA as described in Table 5. 

Each experimental setup was amplified in duplicate.  These contributors differ from those 

reported in Taylor [20]. 

 

Table 5:  Mixture setup 

Ratio of contributors 
Total DNA (pg) 

C1 C2 C3 C4 

10 5 2 1 

100, 200, 400, 1000 20 10 10 1 

50 25 10 1 

 

Profiles were analysed using software STRmix™ V2.4.05 and V2.5.02. In all analyses the non-

autosomal loci i.e. the Y-indel locus and DYS391 were ignored. For all calculations, the 

product rule was used (i.e. no co-ancestry coefficient) and the point estimate has been 

given.  LR calculations considered each person within a database of 194 individuals - as a 

potential contributor, or POI, to the mixed DNA profiles. In doing so there are comparisons to 

all individuals who are known to have contributed to the DNA profile (when Hp is true) and 

the remainder, who are known not to have contributed (when Hd is true). 

 

The true donors have been separated into those with a proportion above 10% and those with a 

proportion below 10%.  In Fig. 3, the x-axis is template in picograms (that is one millionth of 

one millionth of a gram).  There is a courtroom trend to compare this with the template in a 

diploid human cell which is about six picograms.  The questioning might go:   

“This profile is estimated to contain 5 picograms.”  

“That is less than one cell isn't it?”   

It is worth mentioning that any cell membrane has long been disrupted and we are not talking 

about cells at all by this stage.  In the example mentioned of 5 picograms this means that there 

is about a 43% chance that any allele is not sampled at all, and about a 57% chance that it is 

sampled at least once.   

As the template diminishes the likelihood ratios for both the true and false contributors tends 

towards one.  This is a log(LR) of zero (marked with a central horizontal line in the graph).  

They do not trend to exactly zero.  Many graphs have been produced like the one shown.   

These exhibit an overlap of LRs for donors and non-donors around the range log(LR) ±3. This 

is a result of the small stochastic imbalances described in the section "the lowest possible trace."  

This is the correct result.  It is not an error of the analytical pipeline, but a consequence of 

natural variation in peak height behavior when the specimen only weakly informs the 



 

 

underlying genotype.  A software that does not show this effect is not using peak height 

properly. 

As the log(LR) approaches zero the analyses are losing their informativeness. The overlap in 

this range is a consequence of the number of false donor tests carried out. Typically, this 

number is in the hundreds or thousands, and so overlap in the LRs is expected to be observed 

up to a similar level.  

As the log(LR) gets higher there is still a chance that a false donor could produce such a result.  

Should we have the computing power to run billions of tests, we would see overlaps 

approaching log(LR) values of nine. 

This should not be news to the reader.  There has always been a chance that a non-donor could 

match a profile or mixture by chance.  In fact, an LR of at least one million will occur from no 

more than 1 in a million false donors [17].  This is the false inclusion rate of the DNA itself.  

STRmix™, as a software, has never added to this false inclusion rate (e.g., [17, 21, 24]).   

The publication of these data fulfils PCAST’s requirement for validation of extremely low 

template or high ratio mixtures. 

 

 

Figure 3.  A plot of log10(LR) vs template for each donor in a four-person mixture.  For the 

false donor tests the template is assigned as the smallest template of the four true donors.  For 

those samples with template above 1 pg, the 194 false donors have been tested against the 

profile.  Due to plotting limitations, samples with a template of 0 are represented in this plot at 

template 0.5 pg.  There are 100,000 false donors tested against a profile where the smallest of 

4 donors is not present at all (template = 0 pg).  For the true donor tests the data have been 

divided into proportion above 10% (high) and those with proportion below 10% (low).  

 



 

 

 

Figure 4.  A plot of log10(LR) vs mixture proportion for the smallest of a set of four person 

donors.  For those with samples with mixture proportion above zero the 194 false donors have 

been tested against the profile.  For the data series plotted at template of zero there are 100,000 

false donors tested against a profile where the smallest of four donors is not there at all.   

 

3.3. Power of replication and known contributors 

There is a very significant effect of replication and known contributors.  This was shown by 

Taylor [20].  We reproduce a key graphic here (Figure 5.1…5.3). 

This demonstrates that replicates or known contributors significantly improve the ability to 

discriminate true from false donors. This has been known for quite some time although we 

have trouble finding an early published statement to this effect.  The magnitude of the effect 

came as a pleasant surprise.  This would suggest that any attempt to assess the performance of 

the software should include replication and known contributors as variables along with number 

of contributors, template and degradation of each contributor.   

In Figure 3 it is worth noting that the points that represent the minor contributor in high ratio 

mixtures (the square points) do not all necessarily sit around log(LR) = 0. In fact, towards the 

centre and right hand side of the graph (as template increases) the LRs produced by these 

contributors reach and exceed 10 orders of magnitude.  

 

  



 

 

3.4. Magnitude of validation testing 

Factors already known to affect the performance of probabilistic genotyping software include 

template of the POI, number of contributors, replication and the number of known contributors.  

Mixture proportion of the POI has been highlighted by PCAST and should be included in a 

validation.  The PCAST addendum quotes Butler as noting that it is important to consider 

samples with different extents of allelic overlap among the contributors9.  The size of what 

would be considered an acceptable experimental set-up with regards to the number of samples, 

the degrees of overlap and the mixture proportions has not been defined.  We note that modern 

multiplexes produce 21 or 24 different combinations because they have that number of loci.   

Let us consider four-person mixtures amplified in triplicate at five different template levels.  

We use only four persons A,B,C and D but we vary the mixture proportion of each contributor 

in five steps between 0.5 and 0.0.  This comes to 1,875 samples.   

Let us say we next run these samples for four Hp true analyses and 200 Hd true tests each.  This 

tallies 7500 Hp true and 375,000 Hd true calculations. We have not, as yet varied the genotypes 

of the contributors.  We have received a suggestion from PCAST of 100 different genotype 

combinations and separately a suggestion that 200 Hd true tests is insufficient.   

At this point we still have no criterion that suggests whether these tests have succeeded or 

failed.  This is especially difficult for the Hp true tests.  Recall that the output is an LR.  Imagine 

we run one of these and obtain an LR of 108.  Is that correct?  There are very few circumstances 

where we can predict the correct LR (given the models) [26].  For the remainder we cannot 

obtain a correct LR, or in other valid views, there is no correct LR (e.g., [27]).  This is a fairly 

dry venture.  We appear to be asked to run thousands of tests taking many thousands of hours 

and simply record and then publish the result.  However dry this is to do it will be worse to 

read in the unlikely event that it is published. 

None of these published tests will be the same as the case in question although, with luck, they 

may straddle it. 

 

                                                           
9 This plausibly harks back to NIST 13 mixture exercise example 5.  NIST’s experimental design was four 

people selected from a database of 259.  Within the Identifiler profile these four people collectively showed at 

most 4 alleles per locus.  These were mixed in the ratio 1:1:1:1 without degradation resulting in a mixture that is 

a perfect fit for 3 people (1:2:1) or 4 people (1:1:1:1 or 1:2:1:trace).  The highest likelihood solution is 

1:2:1:trace.  It is impossible to differentiate these solutions without reference to the genotype of the POI.  Use of 

the POI was discouraged by the then extant SWGDAM guidelines [25] Scientific Working Group on DNA 

Analysis Methods (SWGDAM). SWGDAM Interpretation Guidelines for Autosomal STR Typing by Forensic 

DNA Testing Laboratories. 2010.  The use of the POI is only acceptable in systems that treat the analysis under 

Hp and Hd completely separately.   

The NIST 13 experimental design does not take cognisance that manual assignment of the number of 

contributors relies on a random selection of genotypes.  There are, for example, over 183 million combinations 

of 4 people in a set of 259.  It is from amongst these that this one has been selected.  Whilst this tests the limits 

of the software, it is important that any subsequent error rate is not misrepresented as typical.   It is very unlikely 

that NIST is encouraging use of the genotype of the POI which leaves open the question of the focus of example 

5.   

 



 

 

Figure 5.1 LRs produced for four-person mixtures, with LOWESS lines and polygons 

showing coverage of scatterplot points

 
Figure 5.2 LRs produced for four-person mixtures using three replicate amplifications, 

with LOWESS lines and polygons showing coverage of scatterplot points 

 
Figure 5.3 LRs produced for four-person mixtures using three replicate amplifications and 

assuming three out of the four known contributors in each analysis, with LOWESS lines 

and polygons showing coverage of scatterplot points 

 



 

 

New interpretation software challenge the way we need to view and discuss validation.  Many 

of the variables are continuous and there are many variables.  If we attempt coverage we are 

calling for very extensive testing.  This will need to be repeated for every major change in 

equipment, chemistry, or a major instrument repair.  It is important that we do not erect an 

unproductive barrier to progress.   

The output, whether it is an LR or match statistic, is difficult to score for accuracy.  This is 

because of the difficulty or impossibility in determining the correct answer.  We can make 

general comments about LR expectations such as: 

1.  We desire largely LRs greater than 1 for Hp true and less than 1 for Hd true. 

2.  We believe that the average LR for a large number of Hd true tests should be 1.   

3.  We expect the LR to tend upwards with increasing template of the POI for Hp true tests, 

3a.  We expect poor PCR (extremes within the modelling) to produce low LRs even for Hp 

true tests. 

4.  We expect the LR to tend downwards with increasing template for Hd true tests. 

4a.  We expect any individuals producing high LRs for Hd true tests to have appropriate 

alleles for the mixture. 

5.  We expect LRs for Hp and Hd true tests to be nearer 1 for increased contributor number, 

6.  We expect LRs for Hp and Hd true tests to be farther away from 1 for increased known 

contributors or replicates. 

 

4. Discussion 

Earlier we mentioned that we would return to the discussion of what constitutes a reliable DNA 

profile in the context of probabilistic genotyping systems. Consider the three steps we gave in 

the train of thought that would lead to an individual believing that complex and low level DNA 

profiles would not produce reliable results. We agree with the first and last of these statements. 

Low levels of DNA do produce profiles with a higher level of peak height variability than 

samples with ample DNA. We also agree that unreliable data analysed by probabilistic 

genotyping produces unreliable results. It is the crucial middle step with which we disagree. 

Let us define what is meant by an unreliable DNA profile; an unreliable profile is one that has 

some features that simply cannot be explained from any of the knowledge we have about DNA 

profile behaviour. The same definition can be used in probabilistic genotyping; unreliable data 

would be a DNA profile that has features that are not characterised at analysis or modelled by 

the software.  Most continuous probabilistic genotyping methods have models for saturation, 

back and forward stutter, DNA template's relation to peak heights, degradation’s effect on peak 

height, locus amplification efficiencies, PCR replicate amplification efficiencies, drop-in, 

drop-out and peak height variability. The last one is the most relevant to the train of thought 

above. The peak height variability model should consider that high peaks will have low 

variability relative to their intensity and low peaks will have relative high variability. If data 

are produced that have originated from low levels of DNA, and hence produced low peak 

heights, the software should be able to handle this and consider it appropriately. In other words, 

as peak heights become smaller, the peak height variability model in the probabilistic 

genotyping system will consider more possible explanatory genotypes, spreading the 

probability of the observed data given these genotypes (commonly called weights) across them. 

This is analogous to what a human would do prior to probabilistic genotyping capabilities, i.e. 



 

 

they would consider that many explanatory genotypes were possible. The difference with the 

human interpretation is that upon reaching this conclusion the only course of action in many 

instances was then to deem the profile too complex for further interpretation. This was not a 

comment on the reliability of the data produced, but rather the inability of a human to 

enumerate the complex formulae required to evaluate it. 

5. Conclusion 

The advent of probabilistic genotyping has greatly extended the range of samples that can be 

reliably interpreted.  It has also changed the key factors limiting interpretation.  Old concerns 

about low template or low mixture proportion seem to be ameliorated by systems that reliably 

report an LR near one when the profile is uninformative.  These changes challenge the now 

outdated, but still prevalent, thinking.  These old concerns still appear in courts and guidance 

producing bodies.  The obvious solution is communication.  Publication of additional material, 

much of which already exists, in the peer reviewed literature is constrained by the fair policy 

that such material is not novel.  New methods of communication must be facilitated.   
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