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The interpretation of mixed profiles from DNA evidentiary material is 

one of the more challenging duties of the forensic scientist. 

Traditionally, analysts have used a “binary” approach to interpretation 

where inferred genotypes are either included or excluded from the 

mixture using a stochastic threshold and other biological parameters 

such as heterozygote balance, mixture ratio, and stutter ratios. As the 

sensitivity of STR multiplexes and capillary electrophoresis 

instrumentation improved over the past 25 years, coupled with the 

change in the type of evidence being submitted for analysis (from high 

quality and quantity (often single-source) stains to low quality and 

quantity (often mixed) “touch” samples), the complexity of DNA profile 

interpretation has equally increased. This review provides a historical 

perspective on the movement from binary methods of interpretation to 

probabilistic methods of interpretation. We describe the two 

approaches to probabilistic genotyping (semi-continuous and fully 

continuous) and address issues such as validation and court 

acceptance. Areas of future needs for probabilistic software are 

discussed. 
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1.  Introduction 

DNA profile interpretation is a process undertaken to help address the question “who is the 
source of the DNA in this profile?” If the stain has originated from one individual (termed 
single-source) assigning a weight to the evidence is relatively easy. DNA profile 
interpretation is complicated when there is more than one contributor to a profile (termed 
a mixture) and by dropout and allelic drop-in. Dropout is a consequence of low template, 
degraded, or inhibited DNA and results in partial DNA profiles, where the DNA from one or 
more contributors is not present at all loci. Drop-in is the presence of low amounts of DNA 
within a profile that are not inherent to the DNA extract. Over recent years DNA profiling 
techniques have become more sensitive with improvements to both chemistry and 
detection technology. This has resulted in more sensitive methods leading to the generation 
of more mixtures and profiles exhibiting dropout and drop-in. 

2.  A Historical Statistical Perspective 

To understand where we are today with the widespread acceptance and use of probabilistic 
genotyping methods, it is useful to first examine our past. With single-source samples, the 
statistical analysis of a match between the evidence and the person of interest (POI) can be 
expressed in the form of a Random Match Probability (RMP) [1] or the Likelihood Ratio (LR) 
[2,3]. The RMP estimates the probability of a matching DNA profile (not the person of 
interest’s) within a chosen population. The LR is not a probability but rather a ratio of two 
probabilities that evaluates the evidence given two or more mutually exclusive 
propositions: 
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Where E is the evidence (DNA profile(s)), H1 is the proposition that the POI is the 
contributor of DNA to the evidence (sometimes called the prosecution proposition or 
hypothesis), and H2 is the proposition that some other randomly selected individual from 
the population unrelated to the POI is the contributor of DNA to the evidence profile 
(sometimes called the defense proposition). For an unambiguous single-source profile, the 
probability of the evidence given H1 (the numerator) is equal to 1 since the reference profile 
from the POI would match exactly at all loci. For the same profile, the probability of the 
evidence given H2 (that the DNA originated from someone other than the POI) is equal to 
the RMP. Hence, in its simplest form, the LR for an unambiguous single-source profile is 
1

RMP . 

The statistical evaluation of mixed DNA profiles has traditionally been undertaken using the 
LR, RMP, and a third method, the Combined Probability of Inclusion (CPI) (also known as 
Random Man Not Excluded, RMNE). The CPI is the simplest of the three methods. It is not 
an interpretation method per se in that it does not resolve the profile or attempt to 
determine the genotypes of the individual contributor(s). It is instead used to estimate the 
proportion of unrelated individuals in the population that could be included as possible 
contributors to the profile [4]. 

In 1998, Clayton et al. (1998) proposed a method to interpret mixed STR profiles [5]. The 
focus of this work was the interpretation of two-person mixtures since that was their 
experience “for the overwhelming majority of mixtures encountered during casework” [5]. 
A survey of DNA casework by Torres et al. (2003) [6] over a four-year period around the 
same time as the publication of the Clayton et al. paper made similar observations. Over this 



 

 

4-year period 6.7% of casework samples (163/2424) were mixed. Of these mixtures, 95.1% 
(155/163) were two-person mixtures with the remaining described as high order mixtures. 
Torres et al. noted that a majority of the mixed samples in their survey (over 98%) were 
body fluids involving blood or semen from sexual assaults. Forensic casework in the early 
2000s investigated mostly single source-samples and occasionally low order mixtures, 
predominantly two-person mixtures. 

In the U.S., a study funded by the National Institute of Justice focused on the benefits of DNA 
testing for “minor” property crimes such as burglary and car theft [7]. In 2006, the study 
concluded that DNA testing could be very useful for identifying individuals committing such 
crimes and therefore lead to benefits in public safety. Soon after the publication of the study, 
many laboratories around the U.S. started to see a shift in the types of cases being submitted 
for DNA testing. Rather than the “high quality, high quantity” body fluid stain evidence such 
as blood or semen, laboratories were now testing more “trace” evidence such as swabs from 
car steering wheels and handguns. Often, these type of touch samples contain low quality 
and/or low quantities of DNA from cellular and non-cellular material. It is not uncommon 
that many of these touch evidence samples produce complex mixtures with low-level 
contributors where allelic dropout may be an issue. 

With the shift from mostly high level “simple” two-person sexual assault evidence (where 
the complainant can often be assumed to be in the mixture) to more low-level complex 
mixture evidence, mixture interpretation becomes more challenging. In 2005, Dr. Peter Gill 
presenting for a forensic webinar discussing DNA mixture interpretation remarked “If you 
show ten colleagues a mixture, you will probably end up with ten different answers.” The 
National Institute of Standards and Technology observed similar findings from an inter-
laboratory study on mixture interpretation conducted in 2005 where a wide range of inter 
and intra-laboratory variation was reported [8]. 

In 2005, the International Society for Forensic Genetics (ISFG) empaneled a DNA 
commission to provide guidance and recommendations for interpreting DNA mixtures with 
low-level contributors [9]. Published in 2006, they recommended the LR approach as the 
preferred method for profile interpretation over the CPI or RMNE method partly due to 
their wastefulness of information. The stated advantages of LR approaches were that they 
were the only method that could assess stutter and dropout probabilistically. They gave 
guidance for how to interpret profiles and also recommended the use of a stochastic 
threshold when interpreting low-level DNA mixtures. 

After publication of the 2006 ISFG recommendations, other forensic governing bodies 
published letters in support of the guidelines [10–13]. In the U.S., Budowle et al. [14] and 
the Scientific Working Group on DNA Analysis Methods (SWGDAM) also recommended the 
use of a stochastic threshold in autosomal STR interpretation [15,16]. The idea of a 
stochastic threshold was not a novel concept for STR DNA interpretation. In the late 1980s 
and early 1990s before the routine use of multiplex STR kits, assays such as D1S80, HLA-
DQα, and PolyMarker used PCR to amplify these alleles for evidential material too small for 
conventional RFLP testing. These assays would amplify the target using PCR and then the 
products would bind to a membrane for colorimetric detection (e.g. a blue dot would appear 
on the membrane to correspond with the alleles amplified. The “C” dot (for control) for the 
reverse dot blot PCR amplification assay HLA-DQα and the “S” dot (for sensitivity) in the 
PolyMarker (PM) testing system were quality assurance controls to assure sufficient 
amplification of DNA [17,18]. A weak or missing control was an indication that stochastic 
effects from amplifying low levels of DNA may be present and lead to missing or incomplete 
data in the assay.   

LR methods optionally use peak height information, mixture ratios, and an assigned number 



 

 

of contributors to interpret the mixture under the two or more propositions considered. 
Interpretation (or resolution) of a mixture is the attempt to determine the genotype 
combinations of the different contributors to the profile. The strict application of the RMP 
does not take into account peak heights however many laboratories have adopted a 
modified approach that can interpret a mixed profile after an assumption of the number of 
contributors has been made [1]. The use of peak areas or heights was shown to be very 
useful in the early days of STR profiling to assist with the interpretation of mixed DNA 
profiles [19–21]. The differences in peak heights between different contributors are 
leveraged to resolve the DNA profiles of the different contributors. These models made a 
number of assumptions including that peak heights are proportional to the quantity of 
template DNA, and that the height of ‘shared’ peaks between individuals is the sum of the 
heights of peaks from the contributing individuals. To our knowledge, studies formally 
examining these assumptions have not been carried out, however a vast body of empirical 
data produced by laboratories worldwide certainly supports their validity. 

3.  Binary methods of interpretation 

Early methods of DNA profile interpretation were described as binary as the probability of 
the evidence given a proposed genotype was assigned as zero (genotype excluded) or one 
(genotype included). In a binary method of interpretation all included genotype 
combinations are considered equally likely [22]. There are two broad approaches to binary 
interpretation methods; quantitative (taking into account peak height) or qualitative (not 
using peak heights). Both approaches involve the application of rules or thresholds in order 
to determine genotype combinations of the contributors for which the profile is possible. 
Rules include the management of stutter, application of analytical and stochastic thresholds, 
peak height ratio thresholds, and mixture proportion thresholds [14,23,24]. The purpose of 
a stochastic threshold is to help identify loci where allelic dropout may be possible. 
Stochastic thresholds (ST) are based on empirical data and values are typically set high so 
that single peaks observed at a locus can confidently be labelled homozygous. 

In a CPI calculation the ST was used to determine if loci should be included (all alleles 
observable above the ST) or excluded (one or more alleles observed below the ST) within 
the calculation of the match statistic [4,15]. The ST in isolation was an insufficient criterion 
and other loci needed to be considered when making the include/exclude decision 
mentioned above [4]. The CPI approach tends to waste information that should be used [25]. 
Rather than exclude loci below the ST from the statistic, the ‘2p rule’ was recommended for 
use in the RMP and the LR calculation to account for zygosity ambiguity. The 2p rule assigns 

the probability 2 ip  or ( ) 22 1i i ip p p− + to the occurrence of a single allele, i, whose partner 

may have dropped out. This approach was recommended by the National Research Council 
II (NRC II, [26]) for the interpretation of RFLP data. The 2p rule was used for many years to 
account for potential allelic dropout within a profile. It was thought to be conservative but 
was later shown to be non-conservative under certain conditions [27]. 

One can see in the discussion of future needs in many of these early papers on mixture 
interpretation the recognition that the models of incorporating peak heights and number of 
contributors were somewhat limited beyond very simple examples. Evett and colleagues 
[19] give a prescient need for probabilistic software:   

“The complexity of the actual analysis may best be resolved by computer programs 
of sufficient flexibility and we see the development of such facilities as an important 
area for the future. There is also a need to combine the requirement for such a 
system with the capability of dealing impartially with other factors, in particular, 
peak artefacts, such as pull-up and stutter, and we believe that expert systems 



 

 

technology represents the most profitable path.” 

4.  Probabilistic methods of interpretation 

Binary methods of forensic DNA interpretation are restricted as they are unable to deal 
completely with complex low level or mixed DNA profiles. These types of data have become 
more prevalent as DNA typing technologies and STR multiplex chemistries become more 
sensitive. In addition, binary methods make partial but not full use of the information 
available from peak heights. These shortcomings led to the development of improved 
models that factor in the probability of dropout. 

The concept of probabilistic genotyping is not a recent discovery or innovation. In the classic 
paper by Gill and colleagues (Gill et al. 2000) that introduced the forensic DNA world to 
“Low Copy Number” or “Low Template DNA” testing, the first part of the paper discusses 
the methodology for increasing sensitivity and the need for replicate analyses to develop a 
consensus profile. The second half of the paper provides a probabilistic approach to 
incorporate the probabilities of dropout, drop-in, and stutter into the LR statistic. One of the 
first probabilistic genotyping software systems (LoComatioN) was developed by the 
Forensic Science Service and published in 2007 [28] using the underlying mathematical 
approach in [29] and extended to include population substructure [30]. Additional 
publications with variations in the mathematical approaches but interpreting mixtures in a 
probabilistic framework followed. The DNA Commission of the ISFG has also provided 
guidance for moving to methods to account for dropout and drop-in in low-level DNA 
profiles [31]. 

In general, probabilistic genotyping software can be classified into two categories: semi-
continuous and fully continuous. The semi-continuous method (also known as the drop 
model or discrete model) can optionally incorporate a probability for dropout, Pr(D), 
and/or a probability for drop-in, Pr(C). Semi-continuous methods do not use peak heights 
when generating possible genotype sets and do not model artefacts such as stutter. One 
limitation of the semi-continuous methods is that peak height information is not fully 
utilized by the software. Peak heights are important for the end-user of the software to 
determine parameters such as the probability of dropout or the number of contributors in 
the mixture. 

The dropout probability Pr(D) can be modelled from validation data using logistic 
regression, by using empirical data directly, or by extending models based on Hb [28,32–
36]. The probability of drop-in Pr(C) is generally modelled from empirical data. The 
calculations are sufficiently complex that software is needed and there are a number 
currently in use by forensic laboratories. 

A number of probabilistic methods using different distributions have been described to 
model allelic and/or stutter peaks within a DNA profile [19,37–41]. These models take the 
quantitative information from the DNA profile and calculate the probability of the peak 
heights given all the possible genotype combinations for the individual contributors. These 
continuous methods make assumptions about the underlying behavior of peak heights to 
evaluate the probability of a set of peak heights. They use more information from within the 
profile and reduce the requirement for the subjective manual assignment of peaks as allelic 
within evidence profiles. These methods require the use of specialized software, and again, 
there are a number in use (Table S1). Software implementing full and semi-continuous 
models are generally called probabilistic genotyping methods. Rather than fixing the 
probability of the profile given a genotype to 1 or 0 as done in the binary approach, the 
probability may fall between these two values. Probabilistic genotyping refers to the use of 



 

 

biological modeling and statistical theory to calculate LRs and/or infer genotypes for the 
DNA typing results of forensic samples [42]. They allow for the interpretation of more 
complex low level and higher order mixtures that were previously considered too 
complicated. This has been described as a paradigm shift in DNA interpretation [43]. 

There has been significant adoption of probabilistic genotyping systems by forensic 
laboratories for the interpretation of mixed DNA profiles in recent years. In 2014 Prieto et 
al. reported a European Forensic Genetics Network of Excellence collaborative study 
involving 18 laboratories using LRmix [44]. In 2017, Bright et al. reported the collated 
internal validation data for the continuous probabilistic method STRmix™ from 31 
laboratories [45]. In 2018, Barrio et al. reported on the results of the Spanish and 
Portuguese-Speaking Group of the International Society for Forensic Genetics (GHEP-ISFG) 
collaborative exercise from 25 laboratories mostly using the semi-continuous software 
LRmix Studio [46]. 

5.  Validation and standards 

SWGDAM, ISFG, and the UK Forensic Regulator have all published recommendations for the 
developmental and internal validation of probabilistic genotyping software [42,47,48]. 
Generally, developmental validation is undertaken by the software developers and involves 
the demonstration of the verification of the functionality of the system, the accuracy of 
statistical calculations and other results, the appropriateness of analytical and statistical 
parameters, and the determination of the limits of the software [49]. Internal or end user 
validation is undertaken by the laboratory. It is the accumulation of test data within the 
laboratory to demonstrate that the software is performing as expected. Developmental 
validation studies have been published in peer reviewed journals for a number of different 
probabilistic genotyping software [38,50–52]. In addition, a number of laboratories have 
published results from their internal validation [45,53,54]. Internal validation studies are 
less likely to be published as the findings are no longer considered novel. 

In September 2016 the U.S. President’s Council of Advisors on Science and Technology 
(PCAST) published a report discussing the scientific validity of feature-comparison methods 
including DNA profile interpretation [55,56]. Generally, PCAST were very supportive of the 
use of probabilistic genotyping for the interpretation of mixtures, however they called for 
the expansion of empirical studies and testing for the validity and reliability of methods 
across a broader range of profile types. PCAST emphasized that evaluation of software 
should be undertaken by more than the developers, claiming that to establish scientific 
validity, scientific evaluation is required by other groups not involved in developing the 
method. Further, PCAST urged sharing within the forensic community, through publication, 
of validation studies that properly establish the range of reliability of methods for the 
analysis of complex DNA mixtures. They also proposed that researchers investigate under 
what circumstances and why different methods produce different results. 

A number of analyst decisions are made during the analysis and interpretation of forensic 
DNA profiles. These subjective decisions can lead to differences in the reported match 
statistics. In 2018, Butler et al. reported the results of a 2013 inter-laboratory exercise 
undertaken by 108 laboratories across the U.S. and Canada, called MIX13 [8]. Results for the 
five mixed DNA profiles varied significantly between analysts from different laboratories. 
These differences were due in part to use of different interpretation methods, ST and AT 
values used, allele frequency databases, and differences in population genetic models. 
Differences were also observed between analysts from within the same laboratory. Butler 
et al. reported that this variation “may reflect lack of training or variation in understanding 
mixture interpretation principles. Observed variation in reported results may also reflect a 



 

 

lack of protocol specificity or sufficiency.” [8] 

Probabilistic genotyping methods reduce the number of subjective decisions made by an 
analyst and hence may improve consistency [57]. There are two groups of ‘subjective’ 
decisions that are made during interpretation. The first group relates to the decisions on 
what models to use. The second group of subjective decisions exist because sufficiency 
modelling is not part of the interpretation scheme. It is this second group that can be 
removed as technology and modelling improves, for example such decisions as ‘is this a 
stutter?’. Subjectivity will always exist to some extent. 

Differences between results have also been reported for analysts using the probabilistic 
genotyping software LRmix [44,46] and STRmix™ [58]. The larger differences were mostly 
due to subjective decisions made prior to the use of the software, such as assignment of the 
number of contributors (NOC) and choice of proposition set. Minor differences in the 
STRmix™ study were also observed due to the inherent variability of the Markov chain 
Monte Carlo (MCMC) algorithms used within the software. Probabilistic genotyping 
software utilizing MCMC methods will not produce an identical answer after repeat 
interpretations of the same profile because of the Monte Carlo aspect. The magnitude of this 
variability within the software STRmix™ has previously been explored and compared with 
other sources of variability in forensic DNA profiling including PCR, capillary 
electrophoresis load and injection, and the makeup of allele frequency databases [59]. The 
MCMC variability was shown to be the smallest under the conditions tested. A recent 
interpretation of the MIX13 mixtures using different probabilistic genotyping showed some 
variation between the different software, particularly those employing different methods of 
interpretation (semi versus fully continuous) [60]. Other studies have been published 
comparing the results from different models for different profiles [61–64]. As different 
probabilistic genotyping software use different models, differences in LRs are expected. 

6.  Court acceptance 

There have been a number of admissibility hearings for evidence interpreted using different 
probabilistic genotyping software in the U.S., and a few in Australia. Different jurisdictions 
have different requirements that allow for the presentation of expert evidence from new 
scientific techniques. Commonly, this is a test of general acceptance within the community. 
In the U.S. it is generally based on the Frye standard [65], and more recently the Daubert 
standard [66]. 

The Frye standard, established in 1923, set the bar for determining if evidence has a valid 
scientific basis. Determining if a new scientific procedure has met “general acceptance” is a 
two-step process: (1) identify the area and scientific community into which the scientific 
principle or discovery falls, and (2) to determine if the scientific community has accepted 
the new technology, principle, or discovery [65]. The Daubert standard was established in 
the late 1980s and early 1990s. The US Supreme Court established five criteria for accepting 
scientific evidence: has the theory or technique (1) been tested? (2) been subjected to peer 
review and publication? (3) has a known or potential rate of error? (4) are there standards 
for the technique’s operation? and (5) is there acceptance in the relevant scientific 
community? 

The number of different probabilistic genotyping methods available (Table S1) and the 
significant uptake by laboratories adopting probabilistic genotyping software for use in 
forensic casework is proof of the general acceptance of the methods by the forensic 
community. 



 

 

A non-exhaustive list of admissibility hearings in the U.S. and Australia is given in Table S2. 
In addition to questioning general acceptance, one common theme is the request for access 
to the software source code. Some probabilistic genotyping software is open source, which 
means the source code is freely available under license for use or modification. For 
commercial software such as TrueAllele® and STRmix™, the code is not freely available but 
the developers will make it available to defense experts on request. 

7.  Future 

As mentioned earlier, there has been an increase in the recovery of low-level and/or 
complex mixed DNA profiles due to increases in the sensitivity of modern STR multiplex kits 
and capillary electrophoresis instrumentation, as well as a shift by investigators towards 
submitting increasing numbers of trace DNA samples. Probabilistic methods of 
interpretation have allowed laboratories the ability to analyze cases that were too complex 
for binary interpretation. Therefore, probabilistic software will be an integral component 
of the DNA testing procedure for years to come. 

One area of potential enhancement is in the estimation of the number of contributors in the 
mixture. Presently, for nearly all probabilistic software programs, the number of 
contributors is assigned by the analyst and this information is input when setting the 
hypotheses to be tested by the program. Most software programs “fix” the number of 
contributors to be equal in both the numerator and denominator. Assigning the number of 
contributors can be challenging and is often a crucial step in the decision process to analyze 
a mixture or not – if the number of contributors cannot be assigned with a reasonable 
degree of confidence then many laboratories will not progress an interpretation. This may 
be the case where there are multiple low-level contributors with indications of allelic 
dropout or where dealing with higher order mixtures that appear to originate from four or 
more contributors. One possible approach is to carry out several interpretations under 
different NOC and then report all results. Of course care may need to be taken in explaining 
the results if, for example, a person of interest is excluded under one NOC but included 
under another. A growing number of software programs can maximize the number of 
contributors in the numerator and denominator to allow variation in the number of 
contributors in each proposition [67]. Slooten and Caliebe [68] have published an approach 
that considers the number of contributors a “nuisance” parameter and they provide 
examples using this method. It should be noted that in general, overestimation of the 
number of contributors has very little effect on the LR of the true contributors in the mixture 
and tends to give an uninformative (i.e. approaching 1) LR for a true non-contributor [69]. 

As the forensic DNA community explores Massively Parallel Sequencing (MPS) for 
autosomal DNA analyses, the promises of improved mixture interpretation have been 
demonstrated [70,71]. The presence of “isoalleles” (alleles indistinguishable using size-
based resolution methods such as CE but resolvable at the sequence level) or SNPs in the 
amplicon from individual contributors [72] can readily be identified in MPS data. Bleka et 
al. [73] have shown that mixtures using SNPs from MPS data can be analyzed effectively 
using a fully continuous program. Autosomal STR mixtures analyzed with MPS will also 
likely require probabilistic methods of interpretation. Models to account for variation in the 
“read” rates generated from library preparation, rather than peak heights in CE systems, 
will be required. Stutter will also likely require probabilistic methods of interpretation for 
detecting artifacts that may not be an issue in CE-based interpretation, but may be present 
in MPS data [74]. In addition, complex sequence motifs in the current STR loci can lead to 
variation in stutter products which will require a probabilistic interpretation. 

Although the focus of this review is on autosomal DNA mixture interpretation with 



 

 

probabilistic approaches, there is a strong need to apply probabilistic methods to 
interpreting mixtures with haploid marker systems. Progress has been made in separating 
mitochondrial DNA mixtures using MPS data [75–79]. There is a need for the same 
advancement in Y-STR mixture analysis, particularly given that modern autosomal STR 
multiplexes routinely include Y-STR markers. Taylor  et al. [80] have provided a roadmap 
for a continuous approach to interpreting Y-STR mixtures, but recognize that such systems 
are still in the early stages of development. More recently, Andersen and Balding have 
described a method for the interpretation of Y-STR mixtures [81]. 

8.  Conclusions 

The concept of probabilistic methods to interpret DNA mixtures is neither a new nor a 
recent innovation to forensic testing. Based on the number of publications, there has been 
a recent “explosion” in the number of software programs available for the laboratory (Table 
S1). These include a wide variety of solutions that range from freely available, to programs 
with an open source code, to programs that are commercially supported. At least in the 
United States, there are at least 48 laboratory systems, representing around 100 individual 
laboratories, that have implemented and are using a probabilistic software solution in 
casework. This represents a “tipping point” in that nearly half of the United States has 
transitioned from a binary approach to interpretation to probabilistic methods of 
interpretation. Approximately 55 additional laboratory systems in the United States are at 
some point in the process of procuring or validating a software program. 

With the transition from binary to probabilistic methods of interpretation, we agree with 
Gill et al. [82] that probabilistic genotyping software cannot and should not replace trained, 
qualified, and experienced analysts. The analyst should first assess the DNA profile prior to 
software analysis and then critically evaluate the results produced. It should be 
remembered that probabilistic software is only a tool for the forensic scientist to assist with 
interpretation. 

This crucial evaluation of the input (mixture) and output (LR) from the software therefore 
requires that the analyst have a strong foundation in LRs and understand how their 
particular software works. Many laboratories bringing on a probabilistic genotyping system 
(particularly in the US) may have spent most of their time reporting DNA mixture statistics 
with CPI and/or the RMP. Transitioning to the LR and understanding the nuances of 
building relevant propositions based upon case scenarios can be challenging to users 
accustomed to a frequentist view of probability. 

It is also important, resonating the advice of the DNA Commission of the ISFG and other 
scientists [31], that software should not be treated as a “black box” where something 
magical happens to generate the statistic. The LR generated from the program is based upon 
modeling parameters, population genetic theory, and other assumptions being used by the 
software. It is imperative the end user understand the underlying mathematics (at least to 
a conceptual level), assumptions, models and limitations of the software program to convey 
how the program works to the trier of fact. To quote Buckleton et al. [83], “By understanding 
the strengths and limitations of any PG software, users and stakeholders will better 
understand the system and hopefully use it in a thoughtful manner for the public good.” 

The forensic DNA community is presently in the midst of a paradigm shift in the approach 
to interpreting complex mixtures. Probabilistic Genotyping software provides substantial 
advantages for interpreting low-level, complex DNA mixtures over existing binary 
approaches. This is especially true for any profile where peak heights contain information 
that assists in resolving the genotypes of contributors, and has been found to be true in most 



 

 

circumstances [84]. The software makes better use of the data by accounting for dropout 
rather than excluding the locus or using the “2p” rule. As the field evolves to implementing 
new technologies (MPS) or marker systems (SNPs) compared to the traditional STRs on CE, 
probabilistic methods of interpretation will be a necessary part of the forensic DNA toolkit. 
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