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Abstract 

The use of probabilistic genotyping methods has seen a significant uptake in recent 

years throughout the world. There is a continuing need for empirical validation of 

such methods in contexts involving different wet chemistry conditions and various 

types of (mixed) samples. We have published a large scale empirical validation 

study in response to the 2016 PCAST report addressing, specifically, the issue that 

some sample categories were perceived to have received little, to no, attention in 

the empirical validation literature. More recently, the use of receiver operating 

characteristic (ROC) analysis was suggested as an important part of such validation 

exercises. We present the results of ROC analysis for a previously published study. 

The ROC curves demonstrate the great discriminatory power of DNA 

demonstrated using the probabilistic genotyping software STRmix™. 

Keywords: Forensic DNA analysis; validation; ROC; verbal scale; NIST; 

probabilistic genotyping; STRmix  

Introduction  

In 2016, the President's Council of Advisors on Science and Technology (PCAST) issued 

a report [1] and subsequently an addendum [2].  This report discussed a number of 

forensic disciplines including the interpretation of complex DNA mixtures, defined as 

any profile with three or more donors.  The report noted perceived limits to the proof of 

validity of the use of probabilistic genotyping (PG) in some situations at the time of 

publication.  PCAST had limited themselves for proof of validity to empirical studies 

published in the peer reviewed literature.  It is often difficult to publish internal validation 

studies as they are rightly seen as not novel [3].  Two significant publications have been 

published since the release of the PCAST report. These are:   
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(1)  The Federal Bureau of Investigation Laboratory, Quantico, has published its 

STRmix™ internal validation in the peer reviewed literature [4].  This publication 

reports 277 mixtures with two to five donors and a range of mixture ratios and 

templates.  This is in accordance with the SWGDAM guidelines for the validation 

of probabilistic genotyping systems [5]. 

(2) Thirty one (31) laboratories who were either using or planning to use STRmix™ 

published an analysis of mixtures of three, four, five, and six contributors [3].  

 

Subsequent to the PCAST report NIST launched a study which it termed a 

scientific foundation review (hereafter NIST study) [6].  Butler et al. recently presented 

“DNA Mixture Interpretation Principles: Insights from the NIST Scientific Foundation 

Review” [7].  They state that “We should approach validation of DNA mixture 

interpretation methods from a performance basis rather than a list of tasks and tests to 

conduct …”.  In the section on performance based validation they call for the use of 

receiver operating characteristic (ROC) curves and give an example (see Figure 1). 

ROC curves are a technique for visualizing the performance of (binary) classifiers. They 

have been used in, for example, signal detection theory and investigating the behaviour 

of diagnostic systems.  Bleka et al. [8] introduce the use of ROC curves for the assessment 

of PG methods.  
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Figure 1. Different ROC curves for different conditions remade following Butler et al. 

[7].  We have added the points A and B which do not appear in the original. 

 

A method exhibiting an ROC curve indicated by the dashed line in Figure 1 

indicates that the method is no better at classifying between two states than a random 

guess.  For example, if the classifier randomly selects one class 100%p  of the time it 

will get 100%p  of the true positives correct but will also have a false positive rate of 

100%p .  The point (0, 0) represents the strategy of never issuing a positive 

classification.  Such a classifier commits no false positive errors but also makes no true 

positive classifications. The opposite strategy, of unconditionally issuing positive 

classifications, is represented by the upper right point (1, 1).  The point (0, 1) represents 

perfect classification. A point on the ROC graph is better than another if it is above and 

to the left of it.  The point A in Figure 1 is said to be a conservative classifier since it 
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makes few false positive classifications at the expense of fewer true positives.  Point B is 

a liberal classifier since it makes more false positives but obtains more true positives.   

The area under each of the ROC curves (AUC) is a measure of the performance 

of the model.  The higher the AUC, the better the model.  An AUC of 1 represents a 

perfect model (“ideal” in Figure 1) and an AUC of 0.5 represents a random performance.  

The output of a classifier is the assigned class.   

In DNA interpretation forensic scientists should not make categorical statements 

of inclusion [9], but will exclude. In line with the principles of evidence evaluation [10, 

11], the forensic scientist should restrict their attention to questions of the kind; “What is 

the probability of the findings given the propositions?”. 

Before proceeding we will need to rename the terminology in common use for 

ROC plots.  An LR does not give a categorical positive (or negative) but rather is a 

continuous representation of support for or against a proposition.  We can talk about a 

“true positive” only by assigning some decision threshold, t.  A true positive would then 

denote the situation where the person of interest (POI) is indeed a donor to the mixture, 

and the associated LR (contrasting the probability of the evidence under this hypothesis 

with the probability of the evidence under the hypothesis the POI is not a donor) is greater 

than some threshold t.  Therefore, we will rename the true positives as correct support 

(CS) for Hp where Hp is the event that a certain person is a donor.  We rename the false 

positives as false support (FS) for Hp. 

A plot of empirical FS and CS for LR thresholds visually summarises the power 

of discrimination. Such a plot is constructed by computing the FS and CS for all unique 

LR values in the dataset after which the ROC curve follows these values for the ordered 

LRs. Several ROC curves can be compared visually, e.g. for different average peak 
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heights of contributors or to compare the results of interpretation of single source with 

mixed DNA profiles.   

Great care must be taken when applying this approach to avoid giving any 

impression that thresholds should be applied to LRs, and that above some threshold some 

decision should be taken and below that threshold some different decision should be 

taken.  The LR is intended to be combined with other evidence, notably in the form of the 

prior odds, before any decision is made.  The assignment of priors and this combination 

is ideally done by the fact finders.    

Methods 

Data description 

The data used in this study are described in Bright et al. [3].  Briefly, the data come from 

2825 profiles comprising 1591 apparent three, 1136 apparent four, and 98 apparent five 

person mixtures.  These are termed apparent because that is the number of contributors 

(NoC) assigned by a human operator.  These mixtures came from 31 different laboratories 

generated using eight different STR multiplexes and analysed on two different types of 

capillary electrophoresis (CE) instruments.  Each of the 2825 mixtures was deconvoluted 

and compared to 10,000 random non-donors (sampled according to FBI extended 

Caucasian allele frequencies [12]) and the true donors.  This resulted in 10,297 true donor 

LRs and 28,250,000 non-donor LRs.   

In order to give an indication of the number of Hd true tests supporting inclusion, 

the fraction of the 28,250,000 false donor tests that fall in each of the SWGDAM verbal 

qualifier categories [13] is given in Table 1.  
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Table 1. Fraction of the 28,250,000 false donor tests from Bright et al. [3] that fall in 

each of the SWGDAM verbal qualifier categories 

LR range 

Fraction of false donor LRs in this range (N = 28,250,000) 

 0.003197 

 0.003143 

 5.53 × 10-5 

 7.08 × 10-7 

 0 

ROC 

The value for the LR is determined by a large number of factors but two variables that 

explain much of the variance appear to be the number of contributors, NoC, and the 

average peak height, APH.  Accordingly, data were divided into groups based on the 

apparent NoC and the APH per contributor. The APH value was assigned to one of four 

bins: [0, 100), [100, 200), [200, 500), and [500, ∞) where the endpoints of the bins are in 

relative fluorescence units (rfu). APH was calculated for each contributor by averaging 

the peak heights of the unmasked alleles; those not shared between contributors and not 

in back stutter positions of any other contributor alleles.  Alleles that had dropped out 

were assigned a height of half the laboratory’s analytical threshold.  ROC plots were 

created in R [14] using the pROC package [15].   
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Results 

Three summaries of the data are given in Figures 2 through 4 for the assigned three, four, 

and five person mixtures.  These are scatter plots, violin plots, and ROC plots.  In the 

violin and ROC plots, the subset of APH for each contributor is plotted separately.  Scatter 

plots show individual log(LR)s for both Hp and Hd comparisons plotted against APH for 

the known contributor (or smallest contributor in the case of Hd true comparison).  

Exclusions ( 0LR = ) are plotted as log( ) 40LR = − . Within the violin plots, the width of 

the shaded area represents the proportion of the data located there. Exclusions for non-

contributors are not plotted and are represented at the bottom of each plot as the 

percentage of data. The scatter plots and violin plots are reproduced from Bright et al. [3].  

Note to aid in comprehension, the same plotting symbol has been used for all 

experimental NoC in contrast to Bright et al.  Within the scatter plots and violin plots it 

can be seen that LRs for true contributors increase as an individual contributor’s APH 

increases.  Conversely, generally low LRs are obtained for non-contributors trending 

towards 1LR =  as the APH decreases.  Within the ROC plots, it can be seen that for each 

given value of NoC, the curves trend to the top left (northwest) with increasing APH. This 

reflects the fact that as average peak height increases, the evidential value of the stain 

increases, and this is demonstrated by a reduction in FS and an increase in CS. The 

decrease in smoothness of the ROC curves with respect to the increase in NoC is due to 

the decreasing number of mixtures involved in each set of comparisons.  
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Figure 2. Scatter, violin, and ROC plot for apparent three person mixtures.  The scatter and violin plots are reproduced (in amended form for the 

scatter plot) from Bright et al. [3] with permission from Elsevier. 
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Figure 3. Scatter, violin, and ROC plot for apparent four person mixtures.  The scatter and violin plots are reproduced (in amended form for the 

scatter plot) from Bright et al. [3] with permission from Elsevier. 
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Figure 4. Scatter, violin, and ROC plot for apparent five person mixtures.  The scatter and violin plots are reproduced (in amended form for the 

scatter plot) from Bright et al. [3] with permission from Elsevier. 
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The area under each of the ROC curves (AUC) is given in Table 2.  The standard 

error [16] is given in parentheses.    

Table 2.  AUC for each of the ROC curves, standard error in parentheses 

 Assigned number of contributors 

APH range 3 4 5 

[0,100) 0.8869 (0.0041) 0.9554 (0.0027) 0.9819 (0.0018) 

 [100,200) 0.9539 (0.0028) 0.9685(0.0023) 

[200,500) 0.9935 (0.0011) 0.9883 (0.0014) 0.9918 (0.0012) 

[500, ∞] 0.9997 (0.0002) 0.9974 (0.0007) 0.9999 (0.0001) 

 

Discussion 

PCAST argued that the foundational validity of methods that involve at least some 

subjectivity can only be established through empirical validation.  Validation studies 

published in response to the PCAST report [3, 4] have established foundational validity 

in the sense that PCAST suggested. 

Prior to this work, we published two other styles of graphical summary of the data.  

These were the violin plots and scatter plots shown in Figures 2 through 4.  All 

summaries, whether as a statistic or a graph, represent a loss of information.  The value 

of a good summary is that it portrays an important aspect of the data with clarity but 

without undue loss of information.  We can confirm from presentations that the violin 

plots represent a significant challenge to cognition.  The scatter plots do, however, appear 

to be a readily assimilated summary.  The work here seeks to consider whether ROC plots 

add to these summaries. 

Before proceeding to discuss the ROC plots we reprise the use of the terms 

discrimination and accuracy when applied to LRs.  Discrimination in this regard would 
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refer to having different distributions of the LR for Hp and Hd true situations.  These 

distributions need only to be different to be discriminating.  In Figure 5 we show three 

pairs of distributions.  All of these have the same discrimination.  In fact, they would have 

the same discrimination even if the two distributions in Figure 5a swapped position and 

hence have low LRs for Hp true and high LRs for Hd true (the reversed pair Figure 5c) or 

if any monotone transformation was applied, for example multiplying all LRs by 10 or 

squaring the LR.   

An alternate way of describing ROC curves is a plot of sensitivity versus 1 – 

specificity.  This interpretation could also be applied to the diagonal and the points (0,0), 

(0,1), (1,0), (1,1), A, and B in Figure 1.  We obviously want to avoid false support for Hp 

but this comes at the expense of false support for Hd.  Figure 2c tells us, for example, that 

for an apparent three person mixture with APH in the range 0-100 rfu, a negligible risk 

of false support for Hd (high specificity) requires that we accept a sensitivity of less than 

about 60%. 

Accuracy of an LR would be a very different concept from discrimination.  Evett 

warns us, and we follow, not to think of a ‘true’ LR.  Accuracy is usually defined as the 

difference between the assigned value and the true value, and hence we have great 

difficulty talking about the accuracy of a single LR value.  We can however make some 

very strong statements about expected performance.  First, no single LR for a mixture 

should exceed the single source LR for the person of interest.  For this statement to be 

applied it is necessary to check that the conditioning information when applying the 

coancestry correction is the same.  Then, taken as a group, the average LR for the false 

donors should be 1, or less than 1 if there is deliberate conservatism in the assignments 

[17, 18].  We expect certain patterns to groups of LRs.  Both the distribution for the true 

and false donors should tend to 1 as the information inherent in the profiles is reduced. 
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Ramos championed calibration of the LR to improve performance [19].  Ramos 

makes some insightful observations, one of which we reprise in Figure 5a through c which 

show a well calibrated, a poorly calibrated, and a reversed LR, respectively.  Ramos 

makes the point, which we have echoed above, that calibration refers to a group of LRs 

not a single LR. 

The LRs shown in Figures 5a through c would have the same ROC plot and AUC 

(the reversed plot requires inversion of the classification parameter).  ROC plots therefore 

do not inform on accuracy but do inform on discrimination.  Where they inform on 

discrimination only two of the curves have an interpretation in an absolute sense.   

   

Figure 5a.  A well calibrated 

LR 

Figure 5b.  A poorly calibrated 

LR 

Figure 5c.  A “reversed” set 

of LRs 

 

The dashed line in Figure 1 labelled ‘random’ is the situation where the system 

has no discrimination. The curve labelled ‘ideal’ shows complete discrimination, there is 

no overlap at all between the two distributions.  This is impossible to achieve in DNA 

profiling analysis.  For any curve in between, one curve can be described as more 

discriminating than another if it lies closer to the 1,1 point.  Any of these ‘in between’ 

curves can be converted to a discrimination if we know the value of the classification 

parameter to be used.  Alternatively, the AUC can be interpreted as the probability that a 

classifier will rank a randomly chosen true donor higher than a randomly chosen non-

donor.  However, we neither seek to treat the LR as a score nor as a classifier.  Rather we 
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seek to use it as an assignment of the weight of evidence.  We want that weight of 

evidence to be meaningful in its own right. 

We note that a highly discriminating but poorly calibrated (inaccurate) system 

would be considered invalid.  Whereas a less discriminating but well calibrated system 

would be considered valid.  The ROC therefore cannot inform on validity, albeit that it 

may supplement other methods for exploratory data analysis. 

We summarize the information content in these three styles of graphical summary 

in Table 3. 

Table 3.  Summary of information content for three styles of data summaries for LRs 

Scatter plot 
Violin plot 

ROC curve 

Actual values of the LR vs 

Actual values of APH for 

Hp and Hd true 

Smoothed visualization of the 

probability density function of the 

LR values for Hp and Hd true 

Lose the actual LR values but 

retain the relative rate of values 

for Hp and Hd true 

APH reduced to categories APH reduced to categories 

Can visualize calibration Does not inform calibration, 

focussed on discrimination 

 

One cannot determine the actual LR values from inspection of the ROC plots in 

isolation of the data that sits behind them.  Despite the loss of information inherent in the 

ROC plots there is a clarity to them.  Inspection of the ROC plots and AUC values in 

Table 2 suggests that the discrimination of the four and five person mixtures is greater 

than the three person mixtures.  This would be an incorrect conclusion drawn from the 

ROC plot and is due to the low APH range of the apparent 3 person mixtures being 

dominated by false exclusions caused by under assignment of NoC.  Approximately one 
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quarter of the apparent three person mixtures were actually higher order mixtures where 

at least one of the known contributors had dropped out.  This means comparatively more 

false exclusions would be obtained for the known contributors than for the apparent four 

and five person mixtures.    

This work is restricted to apparent three, four, and five person mixtures reported 

by Bright et al. [3].  Further work investigating the effect for two person mixtures would 

be of interest.  We would expect that the same situation would apply; that is, if ground 

truth NoC= 3 and the profile was assigned NoC=2 given one contributor being low level 

then the AUC would be determined almost exclusively from that result.  This again would 

be artifactual and in many ways is the correct result.   

We have produced ROC curves, as suggested by [7], as an aid to assessing 

foundational validity.  These curves demonstrate the great discrimination power of 

STRmix™.  However, the ROC curves do obscure valuable information that can be found 

in other visualisations. In particular, the scatter plots and violin plots give an indication 

of the expected range of LRs given the APH of a contributor, and they can be used by 

casework analysts when interpreting mixed DNA profiles in order to check the 

intuitiveness of a result.     
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