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Traditional forensic DNA interpretation methods are restricted as they 

are unable to deal completely with complex low level or mixed DNA 

profiles.  This type of data has become more prevalent as DNA typing 

technologies become more sensitive.  In addition they do not make full 

use of the information available in peak heights.  Existing methods of 

interpretation are often described as binary which describes the fact 

that the probability of the evidence is assigned as 0 or 1 (hence binary) 

(see for example [1] at 7.3.3).  These methods are being replaced by 

more advanced interpretation methods such as continuous models.  In 

this paper we describe a series of models that can be used to calculate 

expected values for allele and stutter peak heights, and their ratio SR .  

This model could inform methods which implement a continuous 

method for the interpretation of DNA profiling data.   

Keywords: DNA interpretation, mixture interpretation, continuous 

models, stutter 

Introduction 

The forensic examination of biological evidence often produces low level or mixed DNA 
profiles, which are regarded as complex profiles.  Traditional methods of interpretation are 
often described as binary which describes the fact that the probability of the evidence is 
assigned as 0 or 1 (hence binary) (see for example [1] at 7.3.3).  These methods are being 
replaced by more advanced interpretation methods such as continuous models [2, 3].  In 
this paper we describe a series of models that can be used to calculate expected values for 
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allele and stutter peak heights, and their ratio, SR  [2, 3].  This is motivated by the 
difficulties traditional methods have with the interpretation of complex profiles [4, 5].  
Complicating interpretation of any DNA profile is the occurrence of stutter, an artefact of 
the PCR amplification of STR loci.   

The earliest forms of the binary model considered alleles to be present or absent.  Methods 
were subsequently developed that used heterozygous balance ( Hb ) to determine whether 
combinations of genotypes were supported or not.  The binary model assigns a value of zero 
or one to the probability of the profile given the proposed allelic combination (hence the 
term binary) depending on whether the alleles could pair given Hb .  The application of this 
model makes a number of assumptions including that peak area/height (hereafter height) 
is proportional to the quantity of template DNA and that the height of ‘shared’ peaks 
between individuals is the sum of the peaks from the contributing individuals.  This is 
actually a rephrasing of the assumption that the height of a peak is linearly related to the 
quantity of DNA.  Known shortcomings of the binary model [6, 7] have led to the 
development of new and improved models that factor in the probability of drop-out [8-11].  
Subsequently, fully continuous interpretation models have been developed [3, 12].  These 
models take the quantitative information from the electropherogram (for example peak 
heights) and use them to calculate the probability of the peak heights given all the possible 
genotype combinations for the individual contributors.  This approach removes some of the 
criticism regarding subjectivity [13, 14] in profile analysis and attempt to ensure 
consistency in DNA interpretation and reporting across different laboratories.  Well 
described probabilistic systems give a detailed accounting of their respective methods.  
What transpires inside a human expert's mind can be far more opaque than equations 
provided in peer-reviewed journals. 

Continuous methods make assumptions about the underlying behaviour of peak height, or 
of the variability in the ratio of the two peaks of a heterozygote ( Hb ), and the ratio of allelic 

peak height to stutter peak height ( SR ) to evaluate the probability of a set of peak heights.  
These models may be developed from empirical data external to the profile under 
interpretation, by a combination of external data and the profile under consideration, or 
simply by the profile under consideration.  We would tend to favour the combination 
approach. 

In this paper we investigate the underlying behaviour of Hb  and SR .  We also investigate 
the relationship between the heights of two alleles of a heterozygote, and the allele and its 
stutter product.  The aim is to build models to inform a continuous interpretation system.  
Previous work has investigated the variability in Hb  in Applied Biosystems’ Identifiler™ 
[15] and MiniFiler™ [16] multiplexes.  The continuous model may work by means of 
modelling the variability in Hb  directly but more often works with variability in peak 

heights themselves [2, 3].  In single source profiles, the variability in Hb  reduces as the 

average peak height ( APH ) at a locus increases.   

The distribution of peak heights varies with the quantity of DNA and is difficult to 
investigate directly.  The investigation could be undertaken by making consistent 
extractions and amplifications of entirely equivalent templates.  In this case we would 
expect the height of each peak to vary about the same mean.  The distribution could be 
determined directly.  However the consistent replication of extraction and amplification 
template presents some experimental challenges.  We are incapable of standardising the 
template to absolute precision.  It is likely that the replicate peak heights would vary about 
a mean that was also varying.  This is because template would vary and then the PCR process 
would add further variance.  Since the two alleles of a heterozygote are as close as we can 
envisage to replicate extractions and amplifications of the same template, the variation in 



 

 

(the logarithm of) Hb  should be twice that of (the logarithm of) peak height.  This suggests 
that one practical route into modelling the distribution of peak height is through the 
distribution in Hb .   

The variability in SR  is routinely estimated by individual laboratories as part of an internal 
validation of a new multiplex or an analysis platform.  Previous work has investigated the 
longest uninterrupted sequence ( LUS ) as a predictor of stutter [17, 18].  It has been shown 

that alleles with large LUS  values stutter more than alleles with small LUS  values and 

plausibly amplify less.  For any given LUS  there will still be stutter peaks above or below 
expectation.  A larger than expected stutter is likely to be caused by stutter events early in 
the PCR process.  This would be expected to lead to a smaller allelic peak.  This allows us to 
define the following hypothesis:  If, for any given allele, the stutter peak is above expectation 
given its LUS  value, then we expect the peak height for that allele to be below expectation.  
If this hypothesis were true, then this would have implications for any continuous model 
that sought to model stutter as well as allelic peaks independently.   

Many laboratories are moving to the European Standard Set of Loci (ESSoL).  One of the 
multiplexes which include these loci is Applied Biosystems’ NGM SElect™.  We report here 
an investigation into the variability of Hb  and SR  in this multiplex. We acknowledge that 
the concepts are universal across many different STR multiplexes.  We have developed a 
biological model that can easily be grasped by a forensic biologist that is intended for use 
within any software implementing a continuous interpretation method. 

Method 

289 single source DNA profiles were analysed using Applied Biosystems’ NGM SElect™ (Life 
Technologies, Carlsbad, CA) multiplex.  The samples were saliva stains on FTA® Elute card 
(Whatman, Maidstone, England) and DNA was recovered off the card using a simple elute 
method.  Prior to amplification all samples were quantified using Applied Biosystems’ 
Quantifiler™ (Life Technologies, Carlsbad, CA) according to the manufacturer’s instructions.  
A target of 1 ng of DNA was amplified using NGM SElect™ following the manufacturer’s 
instructions in a 9700 silver block thermal cycler.  Amplified products were separated on 
an Applied Biosystems’ 3130xl Genetic Analyser (Life Technologies, Carlsbad, CA) and data 
was analysed using Applied Biosystems’ GeneMapper™ ID version 3.2.1 (Life Technologies, 
Carlsbad, CA) using a 25 RFU limit of detection threshold.   

Loci where the alleles were separated by one repeat were discarded because stutter is likely 
to interfere with the allele height of the low molecular weight allele in an additive manner. 
These have previously been referred to as stutter affected heterozygotes.  In total, 2,323 
heterozygous loci were identified as being suitable for analysis.   

Stutter ratio was defined as 

1a

a

O
SR

O

−=  

where 1aO −  refers to the observed height of the stutter peak, and aO
 
the parent peak.   

LUS  was defined as the longest stretch of basic repeat motifs within the allele.  The longest 

uninterrupted sequence ( LUS ) for each allele was determined using the method of 

Brookes et al. [17].  LUS  values were obtained by looking up the allele designation in the 



 

 

short tandem repeat DNA internet database (STRBase) [19, 20].  Where multiple values for 
LUS  were available the average LUS  value across the reported variants observed was 

taken.  LUS
 

was defined as the difference in LUS  values for the two alleles of a 

heterozygote.  Heterozygote balance ( Hb ) was calculated as  

H

L

O
Hb

O
=  

where HO  refers to the height of the high molecular weight allele, and LO  the height of the 

low molecular weight allele.  Statistical analysis was undertaken using R [21] and MS 
EXCEL™. 

Linear modelling was used to test the effect of various explanatory variables on the 
expected values of SR  and Hb .  Having chosen a model for the expected value we 
investigate models to predict the variance about this expectation.   

Results 

Stutter 

The following linear model was proposed to describe the relationship between SR  and the 

explanatory variables LUS  and locus, l :  

 0, 1,i l il SS LUR  +=  (1) 

This was termed the stutter model.  Linear modelling of stutter has been reported 
previously [22, 23].  The model described in this paper was selected after exploratory 
analysis suggested a nil or small effect of other potential explanatory variables.  The plots 
of SR  versus LUS  for individual NGM SElect™ loci are given in Appendix 1.  The 

interaction term allows a different slope of the SR  vs. LUS  line for each locus.  The 2R  is 

0.83 for the stutter model.  The improvement in fit of LUS  over simple allele number is 

demonstrated for the TH01 locus in Figures 1 and 2 where Figure 1 gives SR  versus repeat 

number (
2 0.02R = ) and Figure 2 SR  versus LUS  (

2 0.58R = ). Of interest may be the 9.3 
allele in TH01.  This has the structure [AATG]6ATG[AATG]3 and hence has a LUS of 6.  
Inspection of Figures 1 and 2 show that the 9.3 allele sits much better in the trend when 
placed at an LUS of 6.    

We would anticipate that log( )SR  would be easier to model because SR  is a ratio.  Given 

that the allelic peak height is much bigger than the stutter peak height this effect should be 
minor.    

 

 

 

  



 

 

Figure 1.  A plot of stutter ratio versus allele repeat number for the TH01 locus. 

 

Figure 2.  A plot of stutter ratio versus LUS  for the TH01 locus. 
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There is good support for using a linear relationship to model the behaviour of SR  with 

respect to LUS  (see Appendix 1).  In addition, SR  is a standard concept for forensic 
biologists and so avoiding the introduction of logarithmic scales will improve model 
acceptance.  A summary of the intercepts and slopes, using this model, for every locus in the 
NGM SElect™ multiplex kit is given in Appendix 2.  D2S441 is very poorly described by this 
model.   

A normal quantile-quantile (Q-Q) plot of the residuals from the model versus theoretical 
quantiles from a normal distribution is presented in Figure 3. 

Figure 3. A plot of the Q-Q plot from the full stutter model 

 

The Q-Q plot suggests that the data is symmetric but with heavier tails than the normal 
distribution.  An assumption of approximate normality is plausibly acceptable noting that 
there are a great many data points in the central region.   

The squared residuals were regressed against allele height in order to investigate the 
factors affecting the variability of SR .  There is a significant effect of allele height on the 

variance of SR  (
143.9 10p −=  ) however, as the coefficient was small (

77.5 10−−  ), it will 

have little effect on the predicted variability of SR .   
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Some alleles show markedly larger variation in SR compared with the expectation.  For 

example, at locus D2S441 the SR  for several values of LUS  are not well described by the 
model (refer Appendix 1).  Closer inspection suggests that, in many cases, this was caused 
by an allele that has a complex repeat structure comprising of variant regions with differing 
LUS  values.  In another example, for D21S11 30 the sequence has been variously typed 
as:  

[TCTA]6 [TCTG]5 [TCTA]3 TA [TCTA]3 TCA [TCTA]2 TCCA TA [TCTA]11 

[TCTA]5 [TCTG]6 [TCTA]3 TA [TCTA]3 TCA [TCTA]2 TCCA TA [TCTA]11 

[TCTA]4 [TCTG]6 [TCTA]3 TA [TCTA]3 TCA [TCTA]2 TCCA TA [TCTA]12 

[TCTA]6 [TCTG]6 [TCTA]3 TA [TCTA]3 TCA [TCTA]2 TCCA TA [TCTA]10 

for different variants [19].  Since we will only know the molecular weight and not the 
sequence when using typical casework electropherograms we have used an average LUS.  
In this case we have used the average of 10,11,11 and 12.  Since we have used an average 
and the sample plausibly contains some of each sequence we expect to see enhanced spread. 

If there is indeed an effect of LUS , as observed here and previously [17, 18], then, using 
the D21S11 example given above we would expect some variants in our set with LUS values 
of 10,11 and 12.  This would lead to distributions in the observed stutter ratio that are 
centred around a higher value (for 12LUS = ) and a lower value (for 10LUS = ) but all 

are plotted at 11LUS = .  Hence a wider spread.  Such widening is a likely explanation for 
the heavy tails observed in Figure 3. 

 Heterozygote balance variability 

The relationship between Hb  and average peak height ( APH ) was demonstrated for NGM 

SElect™ data in Figure 4.  The variation in Hb  decreases as APH increases.  This funnel 
shape has been observed in other multiplexes [15, 16].  Direct comparison of the 

distributions shows that there is less variation in Hb  with NGM SElect™ compared with 
that seen in the Identifiler™ and MiniFiler™ multiplexes [15, 24]. 
 

  



 

 

Figure 4. log( )Hb  versus APH , 2,323 heterozygote NGM SElect™ loci 

 

It is known [17, 18], and reinforced above, that alleles with large LUS  values stutter more.  

One would expect alleles with large LUS  values to have smaller allelic peaks [7] for a given 
template level.  Under this hypothesis, stuttering is one of the determinants of any 

systematic effect on Hb , and it is the difference in LUS , LUS , that should be the 

explanatory variable for Hb .  Since Hb  is a ratio we expect log( )Hb  to be more amenable 

to modelling.  This is supported by previous work [15, 16].  It is helpful to consider the 
concept of the sum of the allelic and stutter peaks, termed total allelic product (T ) [7]. This 

is calculated, for the 
tha  allele, as 

 
 

1a a aT O O−= +  (2) 

We can now define THb  in terms of total allelic product: 

 H
T

L

T
Hb

T
=  (3) 

where HT  and LT  are the total allelic product values for the high and low molecular weight 

alleles respectively.  If stutter is the only cause of variation in allelic peak height within the 

two peaks of a heterozygote, then we expect the mean of log( )THb to be zero, and to have 

no relationship with LUS
 
or any other variable.  In Figure 5 we give the plot of log( )THb  

vs. LUS .  The regression line was forced through the origin.  There was a small but 
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significant negative slope to the regression line in Figure 5 ( 0.0047slope = − ).  A plot of 

log( )THb  vs. the difference in allele repeats ( AR ) also has a small but significant 

downwards slope ( 0.0053slope = − , data not shown).  We conclude from this that there is 

something other than just stutter affecting allelic peak height for a given template level.  This 
is likely to be simply due to the reduced amplification efficiency of the larger allele at a 
heterozygote locus.  Of course template level is the primary determinant of peak height but 

should have no effect on expected THb .  After template the next largest effect appears to be 

stutter ratio and this affects both Hb  and peak heights, but should not affect THb .  Last 

there is something else which we, and others, postulate is simply amplification efficiency.  

This affects peak heights, Hb  and THb .  We are unable to determine from this analysis 

whether the behaviour of this last effect, postulated as relative amplification efficiency is 

better predicted by AR
 
or LUS  however both exhibit a small but significant effect on THb  

 

Figure 5.  A plot of log( )THb  versus LUS  

 

Modelling peak heights  

In this section we model peak heights as opposed to the ratios Hb , THb
 
and SR .  In order 

to develop a model for expected peak height we need first to model the expected value for 

true mass at each allelic position at a locus 
l

anT .  We coin the term mass to subsume 

considerations of template, degradation and locus amplification effects.  The ‘true’ mass of 
template DNA is not known.  We model mass based on our observations of the data and 
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understanding of the behaviour of DNA profiles.  During modelling of peak heights versus 
molecular weight for various multiplexes we have observed that some are adequately 
explained with a linear model whereas some require an exponential model.  NGM SElectTM 
appears to be adequately modelled using the simpler linear model.   

For L  loci, N  contributors and R  replicates the height of an allele, a , at locus l , for 
replicate r, from contributor n  is modelled as: 

 ( ).

l l l l

anr r n n a anT A t d m X= +   (4) 

Where:  
l

am  is the molecular weight of allele a  at locus l  

.

l

rA  ( 1l L=  , 1 ..r R=  ) is the locus offset at locus l , replicate r  

( 1 )nt n N=   is the intercept of the line for mass vs. molecular weight for contributor n  

( 1 )nd n N=   is the slope of the line for mass vs. molecular weight for contributor n   
l

anX  is the count of allele a  at locus l  in contributor n .  1l

anX =  for a heterozygote with 

allele a  and 2l

anX =
 
for a homozygote a . 

We refer to the variables A , t , and d  collectively as the mass variables M.  Note that when 

considering one amplification of a sample we can drop the ‘r’ subscripts, which we 

subsequently do so for simplicity. The locus offset, lA , allows different amplification 

efficiencies for each locus.  One lA  value may be set arbitrarily, termed ‘fixed’ and the others 

allowed to vary, termed ‘free’.  If lA  is allowed to be completely free it will tend to the 

midpoint of a heterozygote for single source profiles and to a related position for mixtures.  

This is unacceptable and would impose a large negative correlation between the peak height 

residuals.  Accordingly we set the probability of each of the 1L −  free locus specific 

amplification efficiency parameters lA  for each of the 1L −  loci as ( , )A AN    where A  is 

the simple arithmetic average of the lA  values and A  is a preset hypervariable.  This 

allows a limited freedom to the lA  variables but penalises any single value that departs 

significantly from the average.  We set a uniform prior on 
A . 

Application of the model for mass and stutter 

Mass at an allelic position at a locus can be apportioned to stutter and allele using the 

following equations where SR is determined from the model.   

 
( )

( 1)
1

l l

a anl

a n l

a

SR T
E

SR
− =

+
 (5) 

 
1

l
l an
an l

a

T
E

SR
=

+
 (6) 

where: 

( 1)

l

a nE −  is the expected stutter peak height of the 
tha  allele for the 

thn  contributor at locus l  

l

anE  is the expected allelic peak height of the 
tha  allele for the 

thn  contributor at locus l . 



 

 

Mass was assigned for each allele for a subset of 100 samples from the NGM SElect™ dataset.  
The subset included both heterozygote and homozygote loci but all stutter affected 

heterozygotes were removed.  Mass variables lA , nt  and ns  were determined by a maximum 

likelihood method.   

The stutter model (eq 1) was used to calculate the expected stutter ratio for each allele.  
Weusten and Herbergs [25] suggest that the relative standard deviation on the numbers of 
chains should be inversely proportional to the square root of the expected number of DNA 
strands entering the amplification.  This suggests that the 95% standard error intervals on 
stutter ratio should have the shape 

l
an

k

T

.  Figure 6 is a plot of the logarithm of the ratio of 

observed and expected heights are plotted against 
l

anT
 
 

Figure 6. A plot of  1

1

log a

a

O

E

−

−

 vs 
l

anT
 
for the stutter peaks.  The dotted lines approximate +/-2 

standard error intervals. 

 

Subsequently the expected heights of the allele peaks were calculated for each sample.  The 
variance of the allele model is examined in Figure 7 where the logarithm of the ratio of 

observed and expected heights are plotted against 
l

anT
.  The x-axis has been truncated in 

Figure 7 at 8000 RFU to avoid saturation effects.  At allele heights above approximately 
8000 RFU, the data points tend to rise above the trend.  These data points are likely to be 
affected by saturation of the 3130 camera, where the relationship between amount of DNA 
and allele height is no longer linear.     
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Figure 7.  A plot of  log a

a

O

E
 vs 

l

anT
 
for the allelic peaks.  The dotted lines approximate +/-2 

standard error intervals. 

 

It has been suggested that the variance of the allele model (Figure 7) is inversely 

proportional to the expected peak height, 
2 l

a anc E
 
[26].  The dotted lines are 1.96 a

l

an

c

E


.where 3.95c =
 
fitted by MLE.  These approximate +/-2 standard error intervals are aimed 

at emphasising the shape of the model fitted to the data.  Inspection of these plots indicate 
that the models are a reasonable description of the data, with few data points observed 
outside the intervals.  The variance is symmetric around mean = 0.   

Recall that expected height is developed from the mass variables, M.  If the predicted 
l

anT  

for each of the two alleles of a heterozygote using M is correct, then these two variables are 
conditionally independent given M.  We could reasonably expect, then, that given M the 

log a

a

O

E
 value for each allelic peak of a heterozygote is uncorrelated.  However we would 

still anticipate a negative correlation between the log a

a

O

E
 values for the allele and 1

1

log a

a

O

E

−

−

for the associated stutter peak. 

The correlation between the observed and expected peak heights at each heterozygote 
locus and between the observed and expected peak heights of allele and stutter was 
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investigated, graphically (see Figures 8a and 8b, respectively).  The Pearson product-

moment correlation coefficient was calculated as -0.0795 for log H

H

O

E
 

for the HMW allele 

versus log L

L

O

E
for the LMW allele and 0.1157 for log a

a

O

E
 allele versus 1

1

log a

a

O

E

−

−

stutter. 

Figure 8a log H
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O
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for the high molecular weight allele vs log L

L

O

E  

for the low molecular 

weight allele for each heterozygote locus and 8b 
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Unexpectedly the scatter plots in Figures 8a and b indicate that there is no detectable 
correlation between stutter and allele in this biological model. 

Assuming an approximate normal distribution, with a mean of zero, a constant variance for 

the stutter model, and variance = 

2
a

l

an

c

E
 for the allele model and variance =

2

s

l

an

c

E
 for the stutter 

model then: 

( )

( )

( )
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1 2
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log
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−
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Plots to check for normality for the allele and stutter models indicate that the assumption 
of normality is sustainable (data not shown).  Both tails of the distribution appear heavy.  
Additional exploratory modelling of the data (data not shown) including fitting a gamma 
distruibution does not improve the fit.   

Discussion 

Previous publications have suggested that LUS is a better explanatory variable for SR than 
allele designation.  This is confirmed for the NGM SElect™ multiplex.  However one locus, 
D2S441 is very poorly described by this model.  One plausible explanation is that the 
sequence data needs re-evaluation.    

Weusten and Herbergs [25] have suggested that the 95% standard error intervals on stutter 
ratio should have the shape 

l
an

k

T

.  This equation was plotted as dotted lines in Figure 6, 

supporting the theory. 

When considering the mean value of Hb we expect no effect of template although template 
is thought to affect the variance about this mean.  Stutter ratio does have an effect on mean 
Hb especially when the alleles differ significantly in LUS.  SR  alone however is not the only 

factor in predicting mean Hb .  This can be observed in Figure 5.  Larger alleles amplify less 
efficiently.  This is likely to be due to an amplification effect with the longer lengths of DNA 
resulting in lower peak heights.   

The concept of mass (T) was introduced in order to model allele heights and stutter heights. 
T was described by the molecular weight of the allele and the three mass parameters; 
amplification efficiency, intercept, and slope.  In this research, mass parameters were 
determined using maximum likelihood.  More elegant methods such as MCMC exist [27]. 

l

anT  and SR  were combined to calculate expected heights for stutter and allele.  The 

approximate linearity of the investigative plots showed an acceptable fit to the log normal 
distribution.  Both tails appear heavy which does not suggest that the gamma models being 
considered by some commentators are a total solution [2, 28, 29].  The correlation graphs, 
Figures 8a and 8b, show no detectable relationship between the expected heights of alleles 
and their corresponding stutter, and the HMW  and LMW  alleles at a heterozygous locus.  
This suggests that the independence model may be sustainable.   

We have described a model that can be used to predict expected values and variances for 



 

 

SR but further give models for predicted allele and stutter heights and the variances about 
these predictions.  We did not find a correlation between higher than expected allele peak 
and lower than expected stutter peaks.  
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Appendix 1 Stutter ratio vs LUS for individual NGM SElect™ loci 
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Appendix 2 Summary of the stutter model 0, 1,i l il SS LUR  +=  

Locus Intercept Slope 

D10S1248 -0.0576 0.0089 

D12S391 -0.0571 0.0107 

D16S539 -0.0502 0.0088 

D18S51 -0.0297 0.0066 

D19S433 -0.0302 0.0074 

D1S1656 -0.0699 0.0106 

D21S11 -0.0079 0.0059 

D22S1045 -0.0881 0.0139 

D2S1338 -0.0073 0.0062 

D2S441 0.0004 0.0031 

D3S1358 -0.0455 0.0092 

D8S1179 -0.0148 0.0062 

FGA -0.0344 0.0066 

SE33 0.0129 0.0041 

TH01 -0.0208 0.0052 

vWA -0.0354 0.0078 
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