
Abstract
Iodine (I) is an essential trace element commonly deficient in 
agricultural systems. Whereas there is much information on I in 
food crops, there is a lacuna of knowledge on the environmental 
factors that affect pasture I concentrations. We aimed to 
identify the most important environmental factors affecting the 
concentration of I in New Zealand pastures, and the consequences 
to agricultural systems. Soil and pastoral samples were collected 
throughout the country and analyzed for I and other elements. 
The soils contained 1.1 to 86 mg I kg−1, with 0.005 to 1.4 mg kg−1 in 
the pasture. In 26% of pastures, I concentrations were insufficient 
for sheep nutrition, whereas 87% contained insufficient I for cattle 
nutrition. Pasture I concentrations were negatively correlated 
with the distance from the sea, and the concentration of oxalate-
extractable amorphous Al, Fe, and Si oxides, which immobilize 
soil I. Soil organic C and clay increased I retention in soil but did 
not significantly affect pasture I concentrations. Future work 
should investigate how soil properties affect pasture I uptake in 
inland areas.
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More than two billion humans are deficient in iodine 
(I), an essential trace element for animals (Mottiar, 
2013), and many agricultural systems suffer defi-

ciencies, thereby reducing productivity. Deficiencies cause 
mental and physical retardation, goiter, and potentially death 
(Zimmermann, 2009). Sheep and cattle require feed I concentra-
tions of 0.05 to 0.2 and 0.3 to 0.5 mg kg−1 respectively, for which 
pasture is the predominant source in many grazing systems 
(Suttle, 2005; Flachowsky, 2007; Grace and Knowles, 2012). 
The prevalence of I deficiency is due to low concentrations in 
inland soils, low soil bioavailability, and nonessentiality for 
terrestrial plants (Fuge, 1996; Zimmermann, 2009; Medrano-
Macías et al., 2016). Iodine deficiency is exacerbated by goitro-
gens, which are thyroid I-limiting compounds commonly found 
in brassicas (Brassica spp.) and clover (Trifolium spp.) (Suttle, 
2005). These are predominantly organic glucosinolates (Hurrell, 
1997). Iodine deficiency is potentially exacerbated by sele-
nium (Se) deficiencies, which are common worldwide, includ-
ing in New Zealand (Arthur et al., 1999; Grace and Knowles, 
2012). Consequently, iodized salt has been extensively supplied 
to humans, with iodized salt licks, oil, drenches, and boluses 
provided to animals (Miller, 1979; Lee et al., 2002; Grace and 
Knowles, 2012; Ershow et al., 2018).

The background concentrations of I in soil typically range 
from 0.1 to 100 mg kg−1 (Fuge 1996; Fuge and Johnson 2015), 
with a mean concentration of 5.1 mg kg−1 ( Johnson, 2003). 
Concentrations in Northern Ireland, which is geographically 
similar to New Zealand, averaged 10.6 mg kg−1 (Smyth and 
Johnson, 2011). Concentrations of 56 mg kg−1 were reported in 
the United Kingdom peat soils, whereas soils in both Norway 
and the United Kingdom ranged from 4.2 to 14.7 mg I kg−1 
(Fuge, 1996). Relatively little soil I originates from the parent 
material (Whitehead, 2000). In contrast, seawater, which con-
tains 0.06 mg I L−1 (Wright, 1995), is a major reservoir of the 
element in the biosphere, with seaspray and subsequent wet and 
dry deposition of volatilized I being important processes for sup-
plying the element to soils. It follows that elevated I concentra-
tions are often found in soils close to the sea (Fuge and Johnson, 
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2015; Medrano-Macías et al., 2016). Johnson (2003) reported 
geometric means of 11.6 and 2.6 mg kg−1 <50 and >50 km from 
the sea, respectively. Iodine may be lost from soil via removal 
in crops, volatilization, and leaching (Medrano-Macías et al., 
2016). Therefore, soil I concentrations are also a function of the 
capacity of the soil to immobilize I (Fuge and Johnson, 2015).

Speciation, pH, redox potential, organic carbon (C), and clay 
content influence the mobility of I in soil (Kaplan et al., 2000). 
The predominate soil forms of I are organic, followed by iodide 
(I−) and iodate (IO3

−), which are present at various proportions 
(Fuge and Johnson 2015; Hu et al., 2009). Labile electrostatic 
adsorption to positive functional groups is higher under acidic 
conditions, though as the pH increases, I− oxidizes to IO3

− thus 
it has more specific adsorption and less volatilization potential—
albeit partially hindered by anion repulsion (Yoshida et al., 1992; 
Fuge, 1996; Zou et al., 2018). Soil sorption decreased as the pH 
increased from approximately 4.5 to 7 (Yoshida et al., 1992; 
Söderlund et al., 2017), and liming caused I losses in English 
soil (Bowley et al., 2017). However, there was no significant 
relationship between pH and total I in an extensive Northern 
Irish database (Smyth and Johnson, 2011), with reports of high-I 
soils formed from heavily weathered limestone and other high 
pH areas (Fuge, 1996). Solubility increases with waterlogging 
and decreasing redox potential when iron (Fe) and manganese 
(Mn) oxides dissociate and IO3

− is reduced to I− (Medrano-
Macías et al., 2016; Qian et al., 2017). Iodine is firmly retained 
by clay-sized particles and particularly organic matter (Shetaya et 
al., 2012; Medrano-Macías et al., 2016; Humphrey et al., 2018), 
with Johnson (2003) finding that peat followed by clay soils con-
tained the most I.

Iodine concentrations in pasture are sometimes insufficient to 
sustain grazing animal health. Much of the international pasture 
concentration data fall within the range of 0.1 to 1.0 mg I kg−1, 
which encompasses the ruminant requirement range of 0.05 to 
0.5 mg kg−1, with as little as 0.026 and >3 mg I kg−1 recorded 
(Smith et al., 1999; Grace and Waghorn, 2005; Trávníček et al., 
2011). Plant roots take up I− more rapidly than IO3

−, as I− likely 
follows the same pathway as chloride (Cl−) (Whitehead, 2000; 
White and Broadley, 2009), with recent evidence that plants 
convert IO3

− to I− (Humphrey et al., 2019). Iodine enters the 
leaves via stomata and cuticular waxes, though it is often fixed 
by the waxes and hence retained in exposed leaves with reduced 
translocation throughout the plant (Humphrey et al., 2019; 
Medrano-Macías et al., 2016). Solubility and atmospheric con-
centrations affect plant uptake. Pakchoi (Brassica chinensis L.) I 
concentrations across three different soils were negatively corre-
lated with their degree of I immobilization (Hong et al., 2012). 
In field conditions, Hylocomium splendens (Hedw.) Schimp. 
(moss) and willow (Salix spp.) shrub leaves contained signifi-
cantly more I near the sea in Norway (Steinnes, 2008; Sivertsen 
et al., 2014). English plot trials demonstrated that pasture I was 
positively correlated with soil I and negatively correlated with 
soil pH (Bowley et al., 2017). In Northern Ireland, 20 predomi-
nantly pasture vegetation and soil samples from various locations 
found that pasture I negatively correlates with the distance from 
the sea, soil pH, and Fe or Mn oxides and is positively correlated 
with soil I and organic C (Bowley 2013).

Widespread agricultural I deficiencies have been identified in 
NZ (Hercus et al., 1925; Grace and Knowles, 2012). Nevertheless, 

some recent work has shown that soil I concentrations are not 
unusually low in some areas, with a mean of 20.9 mg kg−1 found 
in the Waikato region (McNally, 2011). New Zealand’s intensive 
grazing systems use pasture as the first source of I for ruminants. 
There has not yet been investigation into the effect of the afore-
mentioned soil properties and proximity to the sea on the concen-
tration of I in New Zealand pastures, how they may be affected by 
major and trace elements such as Mo, N, P, S, and Se in the soil–
plant system, and how they affect the potential for ruminant I defi-
ciencies. We hypothesized that pasture I concentrations decreased 
with increasing yield, were higher close to the sea, and were lower 
in organic C and clay-rich soils via reduced availability. We aimed 
at identifying the environmental factors that significantly influ-
enced the concentration of I in New Zealand pasture and the con-
sequences to agricultural systems.

Materials and Methods
Sampling and Processing

About 0.2 m2 of pasture, predominantly perennial ryegrass 
(Lolium perenne L.), was sampled from intensively grazed pas-
tures at 69 locations throughout New Zealand during December 
2009 to January 2010. The sampling locations are provided in 
the Supplemental Table S1 (Reiser et al., 2014). Pasture was cut 2 
to 3 cm from the surface to avoid contamination with soil. From 
the same paddock, 10 to 15 soil samples of 0- to 10-cm depth soil 
were collected with a soil corer then combined.

Locations were determined via GPS, and minimum distances 
to the sea (DFS) were estimated using Google Earth. The soil was 
dried at 105°C for 24 h then sieved to 2 mm and stored. Pasture 
was rinsed with deionized (DI) water, dried at 60°C, then milled 
and stored.

Chemical Analysis
The soil particle size composition was determined with the 

pipette method, and pH measured with a Mettler Toledo pH 
meter after addition of DI water (Milli-Q at 18.2 MW) (Reiser 
et al., 2014). Soil and vegetation C and N were measured with 
an Elementar Vario MAX CN element analyzer; in most New 
Zealand soils, all the measured C is organic if the pH is <7, 
which was true in all soils, hence the total C will be referred to 
as organic C.

The concentrations of many elements in the soils were mea-
sured: pseudo-total Al, As, B, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, 
Mn, Mo, Na, Ni, P, Pb, S, Se, and Zn via digestion of 0.5 g soil 
in 5 mL aqua regia (BDH Aristar nitric acid 69%, BDH Aristar 
hydrochloric acid 37%), oxalate extractions were completed for 
Al, As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, P, Pb, S, Si, and Zn using 
the method adapted from (Blakemore et al., 1987), and soluble 
concentrations of Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, P, S, and Zn 
were measured via extraction and filtration with 0.05 M calcium 
nitrate (Reiser et al., 2014). Samples were stored at 4°C then 
measured by inductively coupled plasma optical emission spec-
troscopy (ICP–OES) with a Varian 720 ES. Certified reference 
materials (CRMs) Wageningen ISE 921, IPE 100, and NIST 
1573a were used to confirm acceptable recovery by the digestion. 
Recoveries ranged from 89 to 108% of the CRMs.

Soil and pasture were analyzed for total I, following standard 
methods (Whitehead, 1984; Yamada et al., 1996; Fecher et al., 
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1998; Tagami et al., 2010). Subsamples of each were dried at 
103°C for 4 h (prepAsh 129 machine, Precisa Instruments). The 
soil was milled further, then 0.25 g was added to 4 mL of DI 
water (Milli-Q at 18.2 MW) and 1 mL of 25% tetramethylam-
monium hydroxide (TMAH) in a 25-mL volumetric flask, in 
90°C water for 3 h. When cooled, flasks were filled to volume 
with DI water, transferred and centrifuged at 2620g for 20 min 
(HiCen21, Herolab), then filtered (0.45-mm syringe filter; 
Sartorius Stedim). The procedure was repeated for pasture, 
except 4.5 mL DI water and 0.5 mL 25% TMAH was added 
to flasks, with a centrifuge speed of 5897g. Samples were mea-
sured with a Varian inductively coupled plasma mass spectrom-
etry (ICP–MS) type 820. Iodine calibrations at 0, 1, 5 10, 25, 
and 50 mg L−1 were completed. The machine detection limit was 
0.032 mg L−1, giving a sample detection limit of 0.0032 mg kg−1. 
Certified reference materials included five soils (GSS 4, 6, 8, 10, 
and 14) from the Institute of Geophysical and Geochemical 
Exploration in Hebei, China, and hay powder (BCR-129) and 
skim milk powder (BRC- 063R) from the Community Bureau 
of Reference in Brussels, Belgium. Recoveries ranged from 78 to 
118% (Supplemental Table S2).

Data Analysis
Several authors have reported that soil and dust particles 

become incorporated into the leaves of field sampled plants, 
thereby changing the measured concentration (Robinson et 
al., 2008). Iron was used as an indicator for soil contamination 
of the sample. Although Fe is an essential plant micronutrient, 
plant uptake is strongly regulated, hence high values can indicate 
some contribution from soil. In our survey, pasture Fe concentra-
tions ranged from 44 to 740 mg kg−1. There was a strong correla-
tion (r = 0.790, p < 0.001) with chromium (Cr), which is usually 
found at low concentrations in vegetation. Corrections for soil 
contamination were completed using Eq. [1] and [2], adapted 
from Robinson et al. (2008). First, the concentration of contam-
inating soil, [s] (kg kg−1), was estimated, using Eq. [1]:

[s] = ([Fe]1 − [Fe])/([Fe]s − [Fe]) [1]

where [Fe]1 is the concentration of Fe measured in pasture (mg Fe 
kg−1 dry wt.), [Fe] is the regulated concentration of 40 mg Fe kg−1 
dry wt. assumed in pasture, and [Fe]s is the concentration of Fe 
measured in soil (mg kg−1). After this, the actual concentration of 
the element in vegetation, [x], was calculated using Eq. [2]:

[x] = ([x]1 − [x]s[s])/(1 − [s]) [2]

where [x]1 and [x]s are the concentrations of the elements in soil 
and vegetation (mg kg−1), respectively.

Data were tabulated using Microsoft Excel (Office 365). 
Correlation analyses were performed after the data were tested 
for normality and log-transformed as appropriate.

Results and Discussion
Concentrations of Iodine in Soil and Pasture

Soil I concentrations ranged from 1.1 to 86 mg kg−1, with a 
mean of 9.0 mg kg−1 and median of 4.8 mg kg−1. Supplemental 
Fig. S1 shows a map of the soil I concentrations. Our soil I 
data are higher than the international mean of 5.1 mg kg−1 

( Johnson, 2003), but within the range of 4.2 to 14.7 mg kg−1 in 
single-country studies from Northern Ireland, Norway, and the 
United Kingdom (Fuge, 1996; Smyth and Johnson, 2011). Our 
mean soil concentration was significantly lower than the mean 
(20.9 mg kg−1) reported for the Waikato region of New Zealand 
(McNally, 2011).

Pasture I concentrations ranged from 0.005 to 1.4 mg kg−1, 
with a mean of 0.27 mg kg−1 and median of 0.21 mg kg−1. Our 
mean fell within the common pasture and grass range of 0.1 to 
1.0 mg kg−1, and values were of similar scale to prior studies in 
New Zealand and overseas (Whitehead, 1984; Trávníček et al., 
2011; Sivertsen et al., 2014; Bowley et al., 2017). Some 74% 
of the pasture concentrations were sufficient for sheep, which 
require 0.05 to 0.20 mg I kg−1 (Suttle, 2005), but just 13% con-
tained sufficient I for cattle, which require 0.3 to 0.5 mg I kg−1 
(Flachowsky, 2007). Goitrogenic white clover (Trifolium repens 
L.) accompanies perennial ryegrass in pastures (Suttle, 2005), 
likely raising animal I requirements. Other feed is supplemented 
when pasture growth is low in winter. The predominant I defi-
ciency scenario is sheep eating goitrogen-containing brassicas 
during winter (Grace and Knowles, 2012).

Single outliers with inordinately high I concentrations (soil > 
86 mg kg−1, pasture > 1.4 mg kg−1) were present in both soil and 
pasture samples. These may have resulted from external I inputs 
such as salt licks, or animal supplements that have been depos-
ited onto soil via urine and feces (Grace and Waghorn, 2005). 
Iodine fertilizers are not often used in New Zealand agriculture 
(Grace and Knowles, 2012), though superphosphate can contain 
I, depending on the source material (McNally, 2011). Seaweed 
fertilizers, which can contain up 5000 mg I kg−1, may be used 
(Yeh et al., 2014). A few herbicides and pesticides contain I 
(McNally, 2011).

There is a low risk of Se deficiency exacerbating I deficiency. 
Sheep and cattle require at least 0.03 mg kg−1 in feed (Ullrey et 
al., 1977), and pasture had a mean of 0.090 mg Se kg−1, with just 
six samples (11%) below the deficiency threshold. Of those, four 
contained less than the dairy cow requirement of 0.49 mg I kg−1.

Factors Affecting Soil Iodine Concentrations
There was no significant correlation between soil I and the 

DFS (Table 1). This may be because soil I also depends on the 
capacity of the soil to retain the I that it has received (Fuge 
and Johnson, 2015). Our data showed significant correlations 
between soil I and clay (p < 0.01) and organic matter (total 
C) (p < 0.005) (Table 2), which is consistent with strong 
retention on the solid phase (Medrano-Macías et al., 2016). 
The maximum soil I concentration decreased as the distance 
from the sea increased (Fig. 1), and the mean annual rainfall 
was high, at 1838 mm (Reiser et al., 2014); thus, it is likely 
that weakly and nonbound material was leached beyond the 
0- to 10-cm sampling depth, producing the range of concen-
trations. The four sites that did not fit this trend were N04 
and the three locations between 46.5 and 62 km with the 
second to fourth highest concentrations of I. Supplement 
contamination is a possible cause; soil sodium (Na) concen-
trations (a constituent of salt licks) at three of the locations 
were within the highest 20%. There was a significant positive 
correlation between soil I and soil Na (Table 2). Our findings 
were similar to those of other authors ( Johnson, 2003; Smyth 
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and Johnson, 2011; Bowley, 2013), who reported the highest 
soil I concentrations close to the sea, but with a large varia-
tion. McNally (2011) verified that leaching is likely, with sig-
nificantly more I at the 10- to 20- than the 0- to 10-cm depth 
in soils from the Waikato region of New Zealand. Leaching 
is reduced in soils where I is retained by organic C and clay 
(Whitehead, 2000; Johnson, 2003; Smyth and Johnson, 
2011; Bowley, 2013). Most of our samples were influenced 
by seawater as they were within 50 km of the sea. The sea has 
a negligible influence on soil I concentrations >50 km inland 
(Fuge, 1996; Johnson, 2003). Only 12 of our sampled loca-
tions (17% of the samples) were >50 km from the sea.

The amorphous Fe and aluminum (Al)-silicate (oxyhydr)
oxide fraction sorbed and retained I in soil (Shetaya et al., 2012). 
Soil I was positively correlated with Al, Fe, and silicon (Si) oxa-
late (r = 0.652–0.843) (Table 2). There was no significant cor-
relation between soil pH and soil I, which is consistent with the 
findings of other authors measuring I in field soils (Smyth and 
Johnson, 2011; Bowley, 2013). However laboratory-based stud-
ies have reported a positive correlation between pH and I sorp-
tion (Yoshida et al., 1992; Zou et al., 2018).

Factors Affecting Pasture Iodine Concentrations
Total soil I did not significantly affect pasture I, with an 

r value of −0.207. Our findings stand in contrast with other 
studies (Bowley, 2013; Bowley et al., 2017) that have reported 
significant positive correlations between soil I and plant I. 
Our study had 69 locations throughout New Zealand, whereas 
Bowley et al. (2017) used just one location and Bowley (2013) 
used 20 locations. Therefore, it is likely that our study incorpo-
rated many more soil types and climatic zones (Tait and Zheng, 
2007) (NIWA), which are critical determinants of plant I uptake 
(Hong et al., 2012).

Table 2. Correlation coefficients of variables significantly correlated 
(P < 0.05, minimum r > 0.240) with I concentrations in pasture and soil 
(n = 55–69).

Medium Variable† Coefficient

Pasture Zn soluble 0.344**

S soluble 0.253*

Na total 0.253*

Mn pasture 0.246*

B pasture 0.242*

Si oxalate −0.241*

P pasture −0.244*

P total −0.259*

K pasture −0.263*

P oxalate −0.267*

Ca total −0.269*

S oxalate −0.279*

Pb oxalate −0.281*

N pasture −0.288*

Al oxalate −0.306*

Ca pasture −0.310*

Cr oxalate −0.333**

Fe oxalate −0.372**

DFS −0.546***

Soil Al oxalate 0.843***

S oxalate 0.821***

Si oxalate 0.675***

Cd oxalate 0.667***

Fe oxalate 0.652***

C total 0.638***

Cr oxalate 0.636***

Se total 0.589***

N total 0.578***

P total 0.553***

S total 0.525***

Cd total 0.523***

Al total 0.485***

Mo oxalate 0.426***

P oxalate 0.422***

Cu total 0.394***

Mo total 0.391***

Cr soluble 0.333*

Fe total 0.322**

Na total 0.296*

Cu oxalate 0.276*

Cr total 0.271*

Clay 0.265*

Pb oxalate 0.264*

P soluble −0.247*

Silt −0.267*

Se pasture −0.293*

Co soluble −0.352**

*, **, *** Significant at the 0.05, 0.01, and 0.001 probability levels, 
respectively.

† Total, pseudo-total soil concentration; oxalate, oxalate-extractable 
soil concentration; soluble, soluble/exchangeable 0.05 M Ca(NO3)2–
extractable soil concentration, and C total assumed to be all organic. 
DFS, minimum distance to the sea.

Table 1. Concentrations of predominant elements in seawater, and 
correlations between the distance from sea and their soil or plant 
concentrations (n = 44–69).

Element Concentration 
in seawater†

Correlation between 
soil concentration and 

distance‡

Correlation 
between pasture 

concentration and 
distanceTotal Oxalate Soluble

mg L−1

Na 10,770 −0.080 −0.256**

Mg 1,290 0.129 −0.240*

S 905 −0.063 0.219 −0.367** −0.245*

Ca 412 0.231 0.200

K 380 0.140 0.022

C 28 0.072 0.357**

N 11.5 0.076 0.046

B 4.4 0.010 −0.257*

Li 0.18 −0.017 0.056

P 0.06 0.157 0.221 −0.056 −0.051

I 0.06 0.123 −0.546***

Mo 0.01 −0.154 0.060 −0.082

*, **, *** Significant at the 0.05, 0.01, and 0.001 probability levels, 
respectively.

† Wright (1995). 

‡ Total, pseudo-total soil concentration; oxalate, oxalate-extractable soil 
concentration; soluble, soluble/exchangeable soil concentration.
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Distance from the sea had the strongest effect on the con-
centration of I in pasture. Analysis (Table 2) found a strong 
correlation between these two factors (p < 0.001, r = 0.546). 
Pasture concentrations within 15 km from the sea were highly 
variable, ranging from 0.10 to 0.85 mg kg−1, whereas at DFS 
>40 km, most samples were <0.12 mg kg−1 except for four sites 
that may have received anthropogenic I (Fig. 2). Similar trends 
were observed with barley (Hordeum vulgare L.), pasture, 
wheat (Triticum aestivum L.), and willow shrub from Northern 
Ireland and Norway (Haug et al., 2012; Sivertsen et al., 2014; 
Bowley et al., 2017).

Iodine and other elements present in seawater may have been 
intercepted and retained by leaves or taken up by the roots, thus 
reducing their accumulation in the underlying soils. Several ele-
ments present at ³0.01 mg L−1 in seawater were measured for in 
soil and pasture, but only soluble S had a negative DFS–soil corre-
lation, with B, I, Mg, Na, and S having negative DFS–pasture cor-
relations (Table 1). The critical leaf area index of pasture is high, at 
approximately 4 to 6 for perennial ryegrass and 3 for white clover 
(Martin et al., 2017), hence high rates of sea-derived I interception 
is likely. Bowley (2013) found that washing did not significantly 
decrease vegetation I concentrations, which indicates that I was 

Fig. 1. Distance from the sea versus soil I concentrations (n = 68). Note that a single point containing 86 mg kg−1 is not visible on this graph.

Fig. 2. Pasture I concentration (mg kg−1) as a function of distance from the sea (n = 67). Note that a single point containing 1.4 mg kg−1 is not visible 
on this graph.
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not superficially retained, but inside the leaves, a finding replicated 
by Humphrey et al. (2019). Karunakara et al. (2018) showed that 
pasture can potentially intercept large quantities of I, with mass 
interception factors of 0.25 to 7.7 m2 kg−1, although decreasing with 
rainfall and total I.

Competition for soil sorption sites from other seawater anions, 
particularly halogens, may increase the potential for plant uptake 
and leaching (Sheppard et al., 1995). The increased solubility of 
I resulting from these competitive effects may contribute to the 
observed differences in the relationships between soil and pasture 
concentrations and the DFS (Table 1). The Fe and Al-silicate (oxy-
hydr)oxides fractions were negatively correlated with pasture I (r = 
−0.241 to −0.372) (Table 2). Hence, though this fraction retained 
I in soil, it appeared to also reduce I availability to plants.

Conclusions
This study indicates that without supplementation, sheep and 

cattle will become deficient in I on 26 and 87% of the pastures 
tested. There was no correlation between soil I and DFS, nor was 
there a correlation between soil I and pasture I. However, the criti-
cal factors affecting I in pasture were the DFS and the presence of 
amorphous oxides, with the highest pasture concentrations occur-
ring next to the sea in soils with low amorphous oxides. Therefore, 
the risk of I deficiency in stock is higher away from the sea and 
in amorphous-oxide-rich soils. Future research should test the 
effect of soil properties including organic C and clay on pasture 
I >50 km away from the sea, include the soil soluble I fraction in 
similar datasets, and replicate studies of this nature, to determine 
whether our conclusions are applicable in contrasting environ-
ments, in particular tropical soils and arid soils.

Supplemental Material
The supplemental material provides the latitude and longitude of the 
sampling sites (Supplemental Table S1), a graphical depiction of the 
sampling sites (Supplemental Fig. S1), and the results of the analyses of 
the Certified Reference Materials.
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