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ABSTRACT We report the complete genome sequence of the Campylobacter con-
cisus type strain ATCC 33237 and the draft genome sequences of eight additional
well-characterized C. concisus strains. C. concisus has been shown to be a genetically
heterogeneous species, and these nine genomes provide valuable information re-
garding the diversity within this taxon.

The cells of Campylobacter concisus are Gram-negative, non-spore-forming (1), small
(0.5 � 4 �m), and curved with rounded ends (2). C. concisus has been isolated from

a variety of sites from the human body, including the gingival crevices of patients with
gingivitis and periodontitis, stomach and esophagus biopsy specimens, blood, and
both normal and diarrheic stools (2). In South Africa, C. concisus is the second most
commonly isolated Campylobacter species in pediatric diarrheic stools (3). This species
has also been shown to be phenotypically (4, 5) and genetically (6–11) heterogeneous.

Nine strains were sequenced in this study. C. concisus ATCC 33237 is the type strain
of this species and was sequenced to completion. One strain, CCUG 19995, was isolated
in 1987 in Sweden from a patient with pyrexia and exanthema. The remaining seven
strains (Lasto28.99, Lasto61.99, Lasto64.99, Lasto127.99, Lasto205.94, Lasto220.96, and
Lasto393.96) were isolated in South Africa between 1994 and 1999 from patients with
dysentery, diarrhea, or loose mucoid stools. Strains CCUG 19995, Lasto127.99, and
Lasto393.96 are from genomospecies 2, 5, and 6 (12, 13), respectively, while the
remaining six strains are members of genomospecies 1 (12). The draft genomes of the
eight strains have been well characterized and are genetically diverse (12).

Sequencing of ATCC 33237T was undertaken using the 454 FLX� (Titanium chem-
istry), Illumina (HiSeq), and PacBio platforms. The 454 and Illumina reads were assem-
bled using Newbler (version 2.6) (14, 15) into a single scaffold that was closed using PCR
amplification and Sanger sequencing. PacBio sequencing was performed to address
repeat regions within the genome and an optical bacterial restriction map (16, 17)
(restriction enzyme SpeI; OpGen, Gaithersburg, MD) was used to validate the assembly.
Protein-coding genes, ribosomal loci, tRNAs, and gene start points were identified as
described (18). Annotation was performed by BLASTP comparison to the proteomes of
completed Campylobacter genomes or to proteins in the NCBI nonredundant database,
and by identification of Pfam domains (v.27.0) (19).
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Sequencing of CCUG 19995, Lasto28.99, Lasto61.99, Lasto64.99, Lasto127.99,
Lasto205.94, Lasto220.96, and Lasto393.96 was undertaken using an Illumina MiSeq.
Average coverage between 152� and 254� was achieved. Velvet (version 1.2.10) (20)
was used to assemble the short reads, which were quality trimmed using SolexaQA��

(21) at a quality threshold of 0.01, and then sorted by length to remove all resulting
reads less than 50 bases long. The draft genomes were annotated using the Prokaryotic
Genome Annotation Pipeline (22). The N50 values for these genomes, as calculated
using the QUAST (23) online calculator (http://quast.bioinf.spbau.ru/), were between
134,605 and 349,534 bp.

The two genomes from genomospecies 2 and 5 (CCUG 19995 and Lasto127.99) had
G�C contents of 39.4%, compared to G�C values of between 37.4% and 37.7% for the
seven genomes from genomospecies 1 and 6.

Accession number(s). The genome sequences of ATCC 33237T, CCUG 19995,
Lasto28.99, Lasto61.99, Lasto64.99, Lasto127.99, Lasto205.94, Lasto220.96, and
Lasto393.96 have been deposited at GenBank under the accession numbers CP012541,
NDYN00000000, NDYO00000000, NEFM00000000, NDYP00000000, NDYQ00000000,
NDYR00000000, NDYS00000000, and NDYT00000000, respectively. The versions de-
scribed in this paper are the first versions.
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