
481

Abstract
Biosolids disposal to landfill or through incineration is wasteful 
of a resource that is rich in organic matter and plant nutrients. 
Land application can improve soil fertility and enhance crop 
production but may result in excessive nitrate N (NO3

−–N) 
leaching and residual contamination from pathogens, heavy 
metals, and xenobiotics. This paper evaluates evidence that these 
concerns can be reduced significantly by blending biosolids 
with organic materials to reduce the environmental impact 
of biosolids application to soils. It appears feasible to combine 
organic waste streams for use as a resource to build or amend 
degraded soils. Sawdust and partially pyrolyzed biochars provide 
an opportunity to reduce the environmental impact of biosolids 
application, with studies showing reductions of NO3

−–N leaching 
of 40 to 80%. However, other organic amendments including 
lignite coal waste may result in excessive NO3

−–N leaching. Field 
trials combining biosolids and biochars for rehabilitation of 
degraded forest and ecological restoration are recommended.

Potential Environmental Benefits from Blending Biosolids  
with Other Organic Amendments before Application to Land
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We investigate the opportunity and challenges of 
blending biosolids (sewage sludge) with organic 
waste materials for land application to improve envi-

ronmental and economic outcomes. There are numerous publica-
tions describing the effects of adding organic amendments such as 
biochar, wood waste, composts, and lignite to soils (Laghari et al., 
2016). Similarly, the beneficial and detrimental effects of biosolids 
addition to soil are well described. However, there is only dispa-
rate information on the effects of mixing these amendments with 
biosolids, which have physicochemical properties that contrast 
sharply with most soils. This review seeks to determine whether 
such mixtures could alleviate some of the negative environmental 
outcomes associated with the land application biosolids.

Biosolids: Resource and Disposal
Biosolids are the end product of wastewater treatment ( Jones-

Lepp and Stevens, 2007), rich in organic matter and contain-
ing agronomically significant concentrations of plant nutrients 
(Evanylo, 2009). However, biosolids also contain heavy metals 
(Haynes et al., 2009), pathogens (Gary et al., 2011), organic and 
pharmaceutical residues (Shinbrot, 2012), and other xenobiot-
ics including endocrine disruptors (Ramamoorthy et al., 1997; 
Blair et al., 2000; Liu et al., 2009). Most jurisdictions have regu-
lations proscribing the land application of biosolids with excess 
contaminant concentrations (NZWWA, 2003).

Stockpiling biosolids can exacerbate the emission of green-
house gases such as nitrous oxide (N2O), carbon dioxide (CO2), 
and methane (CH4) (Majumder et al., 2014). Chemicals can 
leach through soils from stockpiled biosolids (Raghab et al., 
2013). Treating biosolids as a waste requires disposal and incurs 
substantial costs for a product that could be a valuable resource 
if the environmental risks from residual contaminants could be 
avoided (Magesan and Wang, 2003).

The amount of biosolids produced globally is staggering. In 
2008, biosolids production from 18 counties was estimated to 
be 18 million dry t yr−1 (LeBlanc et al., 2008), and China was 
reported to have doubled its sewage sludge production from 
2005 to 2015 (GWI, 2015). Before landfilling and incinera-
tion, ocean disposal was the major disposal route; ~50% of the 
sewage produced worldwide was dumped into the sea (Bothner 
et al., 1994). Now, biosolids disposal differs between countries; 
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Core Ideas

•	 Landfilling or burning biosolids is an expensive waste of a valu-
able resource.
•	 High rates of biosolids restore degraded soil but cause exces-
sive nitrate leaching.
•	 Combining biosolids with other biowastes can mitigate nitrate 
leaching.
•	 Dried, but not wet, wood waste effectively mitigates nitrate 
leaching.
•	 Partial pyrolysis of wood waste may provide energy-neutral 
drying.
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for example, in New Zealand, biosolids are disposed of through 
landfilling (60%), ocean discharge (10%), application to agricul-
tural land (10%) and forests (5%), and for land rehabilitation 
(10%) and composting or landscaping (5%) (ANZBP, 2014). 
Landfilling remains the most common form of biosolids dis-
posal (O’Kelly, 2005), with many countries disposing of >50% 
this way (UNEP, 2016). Modern landfills are complex and costly 
facilities to build and operate; in New Zealand, disposal cost 
is approximately US$140 to 175 t−1, excluding transport costs 
(WCC, 2008). Furthermore, landfills are major sources of emis-
sions of greenhouse gases, particularly CH4 and N2O (Spokas 
et al., 2006; Bogner et al., 2008), which account for up to 5% 
of global emissions (Bogner et al., 2008; Miller-Robbie et al., 
2015). Incineration of biosolids is similarly widely practiced 
(Werther and Ogada, 1999), accounting for 70% of biosolids 
disposal in Japan, 58% in the Netherlands, 34% in Germany, 
30% in Canada, 15% in the United States, and 20% in France 
(LeBlanc et al., 2008). Incineration also releases potentially 
harmful chemicals such as dioxins, furans, NOx, N2O, SO2, and 
hydrocarbons (Werther and Ogada, 1999).

Land application of biosolids offers the potential to recycle 
organic matter and nutrients (O’Connor et al., 2005), but patho-
gens and trace elements may present a risk to soil quality and 
human health (Sullivan et al., 2006; Singh and Agrawal, 2008). 
To meet regulatory conditions required for land application, bio-
solids often require treatment that includes some combination 
of aerobic digestion, anaerobic digestion, composting, alkaline 
stabilization, or thermal drying (Lu et al., 2012). All treatment 
systems reduce pathogen loads, volatile organic compounds, and 
other easily oxidized organic fractions, including some organic 
contaminants. Anaerobic systems reduce the organic matter con-
tent of biosolids more than aerobic systems (Marchaim, 2017). 
Biosolids may be dewatered through thermal drying or by using a 
press. Fresh biosolids usually have high concentrations of NH4

+, 
which oxidizes to NO3

− in aged biosolids (Ogilvie, 1998). Tables 
1 and 2 give the physicochemical properties of biosolids resulting 
from different wastewater treatment processes.

Land application is also limited by agronomic loading rates of 
plant available nitrogen (N) in biosolids (Gilmour and Skinner, 
1998). Plant available N is related to total inorganic N and a 

fraction of mineralization of organic N during biosolids decompo-
sition (Gilmour and Skinner, 1998), although composition ratio 
changes with age and origin of the biosolids (Bernal et al., 1998; 
Rouch et al., 2011). Clearly, suitable amendment materials need 
to be low cost, readily available, and easy to transport and apply.

Potential of Biosolids  
to Improve Soil Fertility

Biosolids have been widely shown to improve several physico-
chemical properties of soil, including porosity, cation exchange 
capacity, conductivity, water- and nutrient-holding capacity, bulk 
density, aeration, and drainage (Haering et al., 2000; Stoffella 
et al., 2003; Michalk et al., 2004). It has also been proven that 
biosolids application improves carbon (C) sequestration in soils 
(Bolan et al., 2013). The main contributory constituents toward 
soil improvement are organic matter (>65%) and N (~5%) 
(Schmidt et al., 2001; Evanylo, 2009; Haynes et al., 2009).

Many countries already use biosolids as a supplement or 
replacement for inorganic fertilizer (Ozores-Hampton and 
Peach, 2002; Rajendram et al., 2011). Biosolids can also be used 
as a stabilized product to reuse as a fertilizer in wetland agricul-
ture, where heavy metals and fecal bacteria indicators can be 
maintained under regulatory limits (Uggetti et al., 2012). Of 
course, there is always concern about biosolids application to 
agricultural land in relation to residual biological and chemical 
contaminants (Barnett and Russell, 2001; Magesan and Wang, 
2003). For this reason, it has been suggested that it may be more 
efficacious to use biosolids for soil rehabilitation of degraded 
or disturbed soils, such as recovering plantation-forest soils 
(Paramashivam et al., 2016a) and for mine waste restorations 
(Haering et al., 2000).

Problems Associated  
with Land Application

Any application of biosolids to land carries a risk of nega-
tive impacts on soil quality and human health. Most biosolids 
contain elevated concentrations of heavy metals (McBride et 
al., 1999) and organic contaminants, including polychlori-
nated biphenyls (PCBs), dioxins, polyaromatic hydrocarbons 

Table 1. General properties of biosolids and sewage sludge at different stages of digestion.

pH EC† Organic 
matter CEC‡ Base 

saturation
Dry 

solids NH4
+ NO3

− References

dS m−1 % cmolc kg−1 ——— % ——— —— mg kg−1 ——
Raw sludge 5.5–6.5 0.4 n/g§ 53.5 n/g 6.2 (0.3) n/g n/g (Ogilvie, 1998),(Sanchez-Monedero et al., 

2004),(Rouch et al., 2011),
Aerobic sludge 7.6–8.2 2.2 (1.7) 74 (8.5) 101 n/g 2.3 208 526 (Ogilvie, 1998),(Magesan and Wang, 

2003),(Rigby and Smith, 2013)
Anaerobic sludge 5.8–8.1 4 14 n/g n/g 1.7 (0.2) 520 100 (Ogilvie, 1998), (Magesan and Wang, 2003), 

(Civeira and Lavado, 2008),  
(Rigby and Smith, 2013)

Digested dry sludge 6.4–7.3 5.5 (0.4) 53 (9.5) 39 n/g 94 4732 431 (Ogilvie, 1998), (Rouch et al., 2011), 
(Correa et al., 2006)

Aged biosolids (>3 yr) 4.4–4.5 2.4 (0.8) n/g n/g n/g 65 208 1848 (Ogilvie, 1998),(Nash et al., 2011), 
(Mok et al., 2013),(Laidlaw et al., 2012)

Aged biosolids (>20 yr) 4.5 n/d 51.6 16.7 (0.7) 107 (2.3) 51 (2.2) 130 (7.3) 1352 (2.5) (Paramashivam et al., 2016b)

† EC, electrical conductivity.

‡ CEC, cation exchange capacity.

§ n/g, not given by the authors; n/d, not determined.
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(PAHs), pesticides, herbicides, polybrominated diphenyl ethers 
(PBDEs), nonylphenol, linear alkyl sulfonate, and pharmaceu-
ticals (LeBlanc et al., 2008). Particular concern has been raised 
about the presence of endocrine-disrupting compounds (Liu 
et al., 2009). Biosolids application can result in excessive N 
and P leaching, causing eutrophication of waters (Elliott et al., 
2002; Paramashivam et al., 2016b), unpleasant odors (Rynk and 
Goldstein, 2003; Lu et al., 2012), and pathogens (Sullivan et 
al., 2006; Singh and Agrawal, 2008). Controlled application to 
appropriate soil depths in the correct season with consideration 
of crop harvest and animal grazing undoubtedly minimizes the 
impact of biosolids application (Smith, 1995); however, these 
forms of management are unlikely to provide a complete solu-
tion to concerns about real or perceived contamination issues.

Global standards exist for acceptable biosolids application 
rates to agricultural land (EPA-VA, 2004; NZWWA, 2003), but 
much higher amounts may be required to rebuild and rehabilitate 
forest or mine reclamation land (Sopper and Seaker, 1990). In one 
study, 20 yr of biosolids application to a plantation forest soil in 
Washington was shown to have enhanced tree growth without any 
apparent negative impact on either human health or the environ-
ment (Henry et al., 1994). Nevertheless, similar to concerns on 
agricultural land, excessive loading of biosolids to forest rehabilita-
tion or mining land may lead to major concerns of nutrient leach-
ing (Wang et al., 2003; Paramashivam et al., 2016b).

Organic Amendments
There is gathering evidence that a combination of biosol-

ids with low-N organic materials offers an opportunity to 
reduce N leaching from soils amended with biosolids (Table 3). 
Coapplication of materials that sorb contaminants and mitigate 
negative impact on the environment obviously needs to provide 

convincing evidence that this can be realistically achieved (Miller-
Robbie et al., 2015). Pyrolysis of organic waste such forestry, 
garden, and agricultural wastes produces biochar. Biochar shows 
promise to sorb xenobiotic organic contaminants (Spokas et al., 
2009; Wang et al., 2010; Zhang et al., 2010); inorganic compo-
nents including NH3, N2O, NO3

−, and NH4
+ (Taghizadeh-Toosi 

et al., 2011; Taghizadeh-Toosi et al., 2012; Paramashivam et al., 
2016b); and metals (Uchimiya et al., 2010; Park et al., 2011). 
Knowles et al. (2011) and Gartler et al. (2013) demonstrated 
that biosolids–biochar mixtures resulted in the same or greater 
biomass production in a range of species compared with adding 
biosolids alone. This indicates that, although some biochars 
reduce N leaching from biosolids, they do not reduce N bioavail-
ability to the point where it affects plant growth.

Sawdust has been used effectively to adsorb contaminated 
dyes (Shukla et al., 2002), heavy metals (Handreck, 1990; Trolove 
and Reid, 2003; Esperschütz et al., 2016) and inorganic and 
organic contaminants from water (Robertson and Cherry, 1995; 
Bugbee, 1999; Schipper and Vojvodic-Vukovic, 2000; Kim et al., 
2003; Harmayani and Anwar, 2012; Israel et al., 2014). Used as 
a bulking agent with biosolids, sawdust can remove pathogens, 
which can be explained, for example, by the toxicity of tannin 
compounds to pathogens (Banegas et al., 2007). Pine sawdust has 
been used to treat groundwater; one study showed that removal 
of NO3

−–N from groundwater via denitrification was at a rate 
of 0.8 to 12.8 ng N cm−3 h−1 (Schipper and Vojvodic-Vukovic, 
2000), where the sawdust provided a C source for denitrifying 
bacteria in a low-oxygen environment.

Lignite is a waste from the coal industry that is ineffective for 
energy production due to its high moisture content (Simmler et 
al., 2013). Budaeva et al. (2006) reported that NH4

+ sorption 
from wastewater by a type of lignite was up to 23.2 g NH4

+ kg−1. 

Table 2. Biosolids and sewage sludge elemental composition (references in Table 1). Values in parenthesis represent the standard deviation of the mean.

Raw  
sludge

Aerobic 
 sludge

Anaerobic  
sludge

Digested  
dry sludge

Aged biosolids  
(>3 yr)

Kaikōura biosolids 
(>20 yr)

Total C, % 44 (0.05) 41 (1.8) 41 (4.5) 38 (1) 23 30 (0.5)
Total N, % 2.2 (0.1) 4.8 (2) 9.3 (4.2) 4.7 (0.9) 1.9 3.1 (0.06)
Organic N, % 2 3.6 n/g† 4.1 n/g n/d
C/N 20 (1.1) 8.5 (2.7) 4.4 8.1 (1.3) 12.1 9.7 (0.02)
Al, mg kg−1 3242 (962) 6522 11412 8618 21709 (333) 17351 (500)
As, mg kg−1 2.2 (1.8) 6.8 (3.2) 16 0.5 22 (3.5) n/d
Cd, mg kg−1 0.9 (0.3) 2 (0.8) 3.7 (1.8) 3 (2.3) 20 (4) 2.3 (0.1)
Ca, mg kg−1 15450 (8450) 21348 48294 4268 11953 (441) 9455 (534)
Cu, mg kg−1 138 (9.5) 161 (113) 437 (106) 300 (105) 689 (105) 637 (39)
Cr, mg kg−1 239 (206) 408 (396) 1022 (208) 114 776 (208) 34.2 (0.3)
Fe, mg kg−1 2794 (274) 4253 (2573) 9882 28450 (1455) 16925 (2962) 8352 (221)
Pb, mg kg−1 60 (0.0) 73 (42) 240 (15) 140 (60) 497 (112) 114 (5.5)
Mg, mg kg−1 1995 (46) n/g 15833 (1177) 3495 (455) 1746 (46) 2994 (55)
Mn, mg kg−1 75 (29) 159 (66) 369 196 (1) 103 (17) 189 (2.2)
Hg, mg kg−1 0.6 (0.3) 0.8 2.8 0.4 6.8 (0.8) n/d
Ni, mg kg−1 19.5 (11) 61 91 17.3 (1.8) 155 (29) 26.4 (1)
P, mg kg−1 3100 1400 3710 (3290) 15444 (5729) 5737 (120) 3463 (248)
K, mg kg−1 2814 (696) 4565 18206 (1180) 2887 (1152) 3171 (78) 3014 (173)
Se, mg kg−1 1 (0.2) 3 5.3 2 n/g n/d
Na, mg kg−1 4959 (719) 3957 6647 (353) 2170 (1919) 1744 (59) 299 (12)
S, mg kg−1 n/g n/g 40000 n/g 12771 (4079) 6736(250)
Zn, mg kg−1 325 (86) 617 (280) 1647 (47) 859 (323) 1611 (373) 1047 (69)

† n/g, not given by the authors; n/d, not determined.
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After several years of amendment with lignite, soil had a higher 
C content (35%), slightly higher N content (33%), and a higher 
C/N ratio than control soil. Lignite mixed with biosolids has also 
been shown to reduce heavy metal uptake by plants (Simmler et 
al., 2013) and inorganic N leaching from soil (Paramashivam et 
al., 2016a).

Addressing Nitrogen Mobility
A strategically managed nutrient plan is required to reduce N 

loss from biosolids amendments while promoting plant produc-
tion. The main forms of N in biosolids are organic N (~95%), 
NO3

− (~4%), and NH4
+ (~1%) (Henry et al., 2000; Daniels 

et al., 2001). After land application of biosolids, some fraction 
of the organic N is mineralized by microorganisms in the soil 
and transformed to mobile inorganic forms (Prasad and Power, 
1997). Nitrate is highly mobile in soil and can be readily leached 
through the soil profile. Otherwise, inorganic species (NH3, 
NO3

−, and NH4
+) are potentially available for plant uptake, 

apart from any losses to volatilization, immobilization, or leach-
ing (Prasad and Power, 1997). The main areas for considerations 
are (i) mineralization rates of the biosolids, (ii) volatilization 
rate of NH4

+–N, (iii) NO3
−–N concentrations in the biosolids 

at application time, (iv) rate of N uptake by vegetation, and (v) 
existing soil conditions and fertility (Haynes et al., 2009).

Biosolids application rates are a critical step in land applica-
tion. For example, 18 mo after the application of biosolids to a 
vineyard soil at rates of 10, 30, and 90 Mg ha−1 (fresh weight), 
soil organic matter increased by up to 3000 mg kg−1 and inor-
ganic N concentrations by 5 to 26 kg N ha−1 (Korboulewsky et 
al., 2002). Despite the benefits of higher application rates, only 
the lowest rate of 10 Mg ha−1 was regarded as a safe application 

rate with no N leaching from the soil. Similar recommended 
application rates on cotton (Gossypium hirsutum L.) crops were 
reported by Samaras et al. (2008) and on sunflower (Helianthus 
annuus L.) by Lavado (2006). Many other studies report that 
application rates ranging from 10 to 30 Mg ha−1 avoid exces-
sive N leaching from soils and do not pose an undue risk to the 
environment or human health (Binder et al., 2002; Brenton et 
al., 2007; Rajendram et al., 2011). Even biosolids that have been 
through advanced treatment systems can result in high levels of 
NO3

−–N leaching if they introduce a high N load combined 
with a low C/N ratio. Therefore, higher rates of application will 
require some additional amendment to restrict nutrient leaching.

Organic Amendments to Blend  
with Biosolids

Few practicable amendments are low cost, easily transport-
able, and readily available. One example is sawdust and wood 
waste from commercial timber logging and sawmilling (Schipper 
and Vojvodic-Vukovic, 2000). Gerwing et al. (1996) reported 
that logging in eastern Amazonia produced some 24.7 m3 ha−1 of 
wood waste. Decomposition of untreated wood waste added to 
a soil increases greenhouse gas emissions; although conversion to 
biochar partly addresses this concern (Gholz et al., 2000), pyrol-
yzation is a costly and time-consuming process. Greenhouse 
gas emissions resulting from the addition of wood waste to soil 
should be balanced against the alternatives, namely incineration 
or landfilling, which will ultimately result in the conversion of 
the wood to CO2 or CH4, respectively. An alternative to wood 
waste is lignite, which is abundant worldwide; recoverable world 
lignite resources are approximately 195 ´ 109 t, with 333 ´ 106 
t being located in New Zealand (WEC, 2010).

Table 3. Outcomes of experiments combining biosolids with organic materials. Ratios are given by mass unless otherwise stated.

Name and details of 
the material Mixing ratio Experiment Finding of the study (mixture of biosolids 

+ material compared with control) References

Pine biochar 350°C 
(Pinus radiata)

Biochar 102 t ha−1 eq. 
Biosolids 600 and 1200 kg 

N ha−1 eq.

Lysimeter in the field 50% reduction in NO3
− leaching (Knowles et al., 2011)

(i) Pine biochar 350°C 
(Pinus radiata)

(i) 1:1 biochar:biosolids (i) Laboratory column 80% reduction in NH4
+–N (Paramashivam et al., 2016b)

(ii) Dry pine sawdust 
(wood waste)

(ii) 2:5 sawdust:biosolids (ii) Laboratory column Eliminated NH4
+–N and NO3

−–N was 
reduced >40%

(Paramashivam et al., 2016b)

Pine biochar 350°C 
(Pinus radiata)

Soil containing 20% 
biochar and 10% biosolids 

by volume

Greenhouse pot 
experiment

Beetroot (Beta vulgaris) Zn (dry weight) 
uptake increased 178 mg kg−1 and Cd, Cu, 

Pb were below the WHO’s guideline values.

(Gartler et al., 2013)

Sawdust 2:1 sawdust:sawdust.  
1250 kg N ha−1 eq.

Greenhouse pot 
experiment

(i) N, P, Cu, Mn and Zn uptake increased in 
Italian ryegrass compared with control (ii) 
Cd uptake was reduced by 50% compared 

with biosolids alone treatment.

(Esperschütz et al., 2016)

Sawdust Various combinations of 
sawdust with aerobic and 

anaerobic sludge

Incubation experiment Suitable composting ratio was identified as 
1:1 by volume with aerobic sludge and 1:3  

for anaerobic sludge.

(Banegas et al., 2007)

Sawdust Sawdust: biosolids mixtures 
with the C/N adjusted to 

20:1. Mixture added at 1, 3, 
7, and 14 t ha−1

Mine tailings reclamation 
and leaching experiments 

with lysimeters

Sawdust mixed with highest sewage 
sludge rate reduced NO3

−–N by 100 mg 
kg−1 compared with no sawdust addition.

(Daniels et al., 2001)

Lignite (mine waste) 2:5 lignite:biosolids Laboratory column 66% reduction in NH4
+–N, but no effect on 

NO3
−–N leaching

(Paramashivam et al., 2016a)

Lignite 1, 3.4, and 7.1 parts of 
lignite to 3.4 parts of 

biosolids

Greenhouse pot 
experiment: Lolium 

perenne ryegrass were 
grown in each treatment

Cd uptake was reduced by 30% in ryegrass 
at 1% lignite application rate

(Simmler et al., 2013)
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Physicochemical characteristics of potential 
organic amendments (Table 4) determine the 
sorption of contaminants when this material is 
blended with biosolids. A porous structure is a 
prominent feature that is key to nutrient absorp-
tion or water and nutrient retention by biochar 
(McLaughlin et al., 2012). With lignite, there is 
a positive correlation between the porous texture 
and the molecular size of the sorbed species (Pope, 
1984). Both materials have high C/N ratios 
(43–1300), which also has a critical influence on 
N mobility within soil (McLaren and Cameron, 
1996; Kwiatkowska et al., 2008).

We found recently that lignite and most bio-
chars are not effective in reducing NO3

− leaching 
from soils amended with biosolids in a low-fertility 
soil (Paramashivam et al., 2016a). Lignite lessened 
the beneficial growth effects of adding biosolids to 
soil and exacerbated N2O production. However, 
sawdust and partially pyrolyzed biochars (result-
ing from heterogeneous temperatures in the pyrol-
ysis kiln) have provided convincing results from 
laboratory and glasshouse trails when applied 
with biosolids to the same soils (Paramashivam et 
al., 2016b). In batch sorption and column leach-
ing experiments, biochars and fresh sawdust failed 
to sorb NO3

−, but NO3
− leaching was reduced by 

Pinus radiata D. Don sawdust with a low moisture 
content. One type of low-temperature (350°C) 
biochar also effectively sorbed NH4

+, reducing 
leaching from columns by 40 to 80%. Blending 
biosolids with some organic materials can reduce 
the environmental impact of biosolids application. 
These findings require further testing in the field.

Sorption of Xenobiotics  
and Heavy Metals

Biodegradation is the major pathway to break-
down xenobiotic compounds (Piveteau et al., 
2001; Ye et al., 2004), ranging from days and 
weeks to years [some compounds, e.g., 1,1,1-tri-
chloro-2,2-bis(4-chlorophenyl)ethane (DDT), 
take up to decades] (Fetzner, 2000). Organic 
amendments can promote biodegradation via 
several mechanisms. Organic amendments that 
contain an easily oxidized C source, such as low-
molecular-weight organic acids, will promote the 
growth of microorganisms, which may in turn 
degrade some organic contaminants (Martin et al., 
2014). Microorganisms such as white rot fungi [an 
assemblage of species, including Pleurotus ostrea-
tus ( Jacq. ex Fr.) P. Kumm and Trametes versicolor 
(L.) Lloyd.] that degrade lignin in wood waste can 
enhance the degradation of persistent organic pol-
lutants such as pentachlorophenol (Mileski et al., 
1988). Microbial inhibition in biosolids caused 
by poor aeration, low pH, or high concentrations 
of metals may be reduced by mixing the biosolids Ta
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with organic amendments (Song and Schobert, 1996; Pehlivan 
and Arslan, 2007; Chassapis et al., 2009; Knowles et al., 2011; 
Simmler et al., 2013; Doskocil et al., 2015).

Xenobiotics can be immobilized or entrapped within the 
micropores of organic soil amendment (Fetzner, 2000). Biochar 
has been widely used for the sorption of xenobiotic contami-
nants from the soil (Wang et al., 2010). Zhang et al. (2010) have 
reported that the phenanthrene sorption linear distribution 
coefficient of soil amended with biochar was 3.4 ´ 104 L kg−1, 
and soil without amendment was only 47 L kg−1.

Heavy metal concentrations in biosolids will be reduced by 
dilution when the biosolids are mixed with an organic amend-
ment that has low metal concentrations. Amendments such as 
biochar can increase the pH of biosolids-amended soil, result-
ing in increased sorption and precipitation of heavy metal cat-
ions (Beesley et al., 2011). Heavy metals may be immobilized by 
sorption onto exchange sites on an organic amendment. Lignite 
increases the cation exchange capacity of the material due its 
high humic acid content (Kucerik et al., 2003; Janos et al., 2011). 
Lignite effectively immobilizes metallic ions and heavy metals 
such as Cu, Pb, Cd, Ni, and Zn in contaminated soils (Karczewska 
et al., 1996; Pehlivan et al., 2004; Budaeva et al., 2006; Domańska 
and Smolinska, 2012; Doskocil and Pekar, 2012) and removes 
radionuclides and potential toxic metals from wastewater (Mohan 
and Chander, 2006; Mizera et al., 2007). Unlike the degradation 
of xenobiotics, the immobilization of heavy metals may not be 
permanent; the degradation of organic amendments, as well as the 
biosolids themselves, may result in desorption of heavy metals and 
their subsequent leaching or plant uptake (Tella et al., 2016). In 
some cases, organic materials may increase the solubility of heavy 
metals such as Cu, which can form mobile complexes with dis-
solved organic C associated with the amendment (Bolan et al., 
2003). However, the solubilized Cu complex may not be bioavail-
able (Kunhikrishnan et al., 2013).

Conclusions
Biosolids can provide organic matter and a rich source of 

nutrients to improve soil quality, but food chain risks and wider 
environmental concerns reduce or even prevent its wide-scale 
application to agricultural land in many countries. Wastewater 
treatment options are unable to address all of these concerns, but 
landfilling and incineration do not provide a sustainable alterna-
tive. Coapplication with other organic waste streams to land cer-
tainly does not always provide a viable solution; however, there is 
evidence that mixtures containing sawdust and partially pyrolyzed 
biochars are effective in mitigating excessive nitrate leaching from 
biosolids-amended soils. Lignite coal waste, while ineffective at 
mitigating nitrate leaching, may reduce plant uptake of biosolids-
borne contaminants such as Cd. Economically and environmen-
tally acceptable solutions that will allow biosolids application to 
agricultural land remain highly challenging, but the requirement 
to improve soil quality for forest and mine rehabilitation probably 
justifies more field investigations. Combining biosolids with other 
organic wastes to rehabilitate degraded land remains a potentially 
practicable and sustainable management of these resources.
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