Institute of Environmental Science and Research
Browse

Taxonomic variation, plastic degradation, and antibiotic resistance traits of plastisphere communities in the maturation pond of a wastewater treatment plant

journal contribution
posted on 2025-02-23, 22:03 authored by Stefan D. M. Maday, Joanne M. Kingsbury, Louise Weaver, Olga Pantos, Jessica A. Wallbank, Fraser Doake, Hayden Masterton, Maisie Hopkins, Rosa Dunlop, Sally Gaw, Beatrix Theobald, Regis Risani, Robert Abbel, Dawn Smith, Kim M Handley, Gavin Lear

Wastewater treatment facilities can filter out some plastics before they reach the open environment, yet microplastics often persist throughout these systems. As they age, microplastics in wastewater may both leach and sorb pollutants and fragment to provide an increased surface area for bacterial attachment and conjugation, possibly impacting antimicrobial resistance (AMR) traits. Despite this, little is known about the effects of persistent plastic pollution on microbial functioning. To address this knowledge gap, we deployed five different artificially weathered plastic types and a glass control into the final maturation pond of a municipal wastewater treatment plant in Ōtautahi-Christchurch, Aotearoa/New Zealand. We sampled the plastic-associated biofilms (plastisphere) at 2, 6, 26, and 52 weeks, along with the ambient pond water, at three different depths (20, 40, and 60 cm from the pond water surface). We investigated the changes in plastisphere microbial diversity and functional potential through metagenomic sequencing. Bacterial 16S ribosomal RNA genes composition did not vary among plastic types and glass controls (P = 0.997) but varied among sampling times [permutational multivariate analysis of variance (PERMANOVA), P = 0.001] and depths (PERMANOVA, P = 0.011). Overall, there was no polymer-substrate specificity evident in the total composition of genes (PERMANOVA, P = 0.67), but sampling time (PERMANOVA, P = 0.002) and depth were significant factors (PERMANOVA, P = 0.001). The plastisphere housed diverse AMR gene families, potentially influenced by biofilm-meditated conjugation. The plastisphere also harbored an increased abundance of genes associated with the biodegradation of nylon, or nylon-associated substances, including nylon oligomer-degrading enzymes and hydrolases.

Funding

New Zealand Ministry of Business, Innovation and Employment, Endeavour Research Program fund C03 × 1,802

History

Submitter

Salila Bryant

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC